ABEL'S THEOREM

MATH 166: CALCULUS II

Theorem (Abel). Suppose $\sum_{n=0}^{\infty} a_n$ converges. Then $f(x) = \sum_{n=0}^{\infty} a_n x^n$

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

converges absolutely for |x| < 1 and

$$\lim_{x \to 1^-} f(x) = \sum_{n=0}^{\infty} a_n$$

Proof. Since $a_n \to 0$, there is a positive integer N such that $|a_n| < 1$ for all $n \ge N$. Then $|a_n x^n| = |a_n| |x|^n < |x|^n$ for all $n \ge N$. The series $\sum_{n=0}^{\infty} |x|^n$ converges for |x| < 1, so the series $\sum_{n=0}^{\infty} |a_n x^n|$ converges by the Comparison Theorem. To prove the statement about the limit, we must show that given $\epsilon > 0$ there ∞

To prove the statement about the limit, we must show that given $\epsilon > 0$ there is a $\delta > 0$ such that if $1 - \delta < x < 1$ then $|f(x) - s| < \epsilon$ where $s = \sum_{n=1}^{\infty} a_n$. The usual strategy is to try to write $f(x) - s = (1 - x) \cdot (\text{something})$ so that as $x \to 1$, $f(x) \to s$. Abel found a clever way to do this with series: Let $s_k = \sum_{n=0}^{k} a_n$ and define $s_{-1} = 0$, so that $a_n = s_n - s_{n-1}$ for all $n \ge 0$. Then,

$$\sum_{n=0}^{k} a_n x^n = \sum_{n=0}^{k} (s_n - s_{n-1}) x^n = \sum_{n=0}^{k} s_n x^n - \sum_{n=1}^{k} s_{n-1} x^n$$
$$= \sum_{n=0}^{k} s_n x^n - \sum_{n=0}^{k-1} s_n x^{n+1} \quad \text{[shift index]}$$
$$= s_k x^k + \sum_{n=0}^{k-1} s_n x^n (1-x)$$

Now assume |x| < 1 and let $k \to \infty$. Since $s_k x^k \to s \cdot 0 = 0$, we find

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = (1-x) \sum_{n=0}^{\infty} s_n x^n$$

Date: Spring, 2000.

The formula for a geometric series implies that $1 = (1 - x) \sum_{n=0}^{\infty} x^n$,

so
$$s = (1-x) \sum_{n=0}^{\infty} sx^n$$
 and
 $f(x) - s = (1-x) \sum_{n=0}^{\infty} s_n x^n - (1-x) \sum_{n=0}^{\infty} sx^n = (1-x) \sum_{n=0}^{\infty} (s_n - s)x^n$

Given $\epsilon > 0$, there is a positive integer N such that $|s_n - s| < \frac{\epsilon}{2}$ whenever $n \ge N$. Therefore, assuming 0 < x < 1,

$$\begin{aligned} |f(x) - s| &= (1 - x) \Big| \sum_{n=0}^{\infty} (s_n - s) x^n \Big| \le (1 - x) \sum_{n=0}^{\infty} |s_n - s| x^n \\ &= (1 - x) \sum_{n=0}^{N} |s_n - s| x^n + (1 - x) \sum_{n=N}^{\infty} |s_n - s| x^n \\ &< (1 - x) \sum_{n=0}^{N} |s_n - s| + (1 - x) \sum_{n=N}^{\infty} \frac{\epsilon}{2} x^n \\ &< (1 - x) K + \frac{\epsilon}{2} \end{aligned}$$

where $K = \sum_{n=0}^{N} |s_n - s|$. The last inequality follows by adding the geometric series: $(1-x)\sum_{n=N}^{\infty} \frac{\epsilon}{2}x^n = \frac{\epsilon}{2}x^N < \frac{\epsilon}{2}$. We can make (1-x)K small too: $(1-x)K < \frac{\epsilon}{2}$ if and only if $1 - \frac{\epsilon}{2K} < x$. Therefore, if we take $\delta = \frac{\epsilon}{2K}$, then $1 - \delta < x < 1$ implies that $|f(x) - s| < (1-x)K + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} - \epsilon$

$$|f(x) - s| < (1 - x)K + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

which shows $\lim_{x \to 1^-} f(x) = s.$

Example. Integrating the geometric series

$$\sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}, \qquad |x| < 1$$

gives

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} x^n = \log(1+x), \qquad |x| < 1$$

The series also converges for x = 1, since it is alternating and the terms decrease to 0. By Abel's Theorem the value of this series is $\lim_{x \to 1^{-}} \log(1 + x) = \log(2)$:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \log(2)$$