# FINAL EXAM TOPICS

MATH 166: CALCULUS II

### Theorems.

- Fundamental Theorem of Calculus
- Derivative of an Inverse Function
- Taylor's Theorem with Remainder
- L'Hôpital's Rule
- Linearity of Series
- Simple Divergence Test
- Telescoping and Geometric Series
- Comparison Test and Limit Comparison Test
- Integral Test
- Root and Ratio Tests
- Leibniz's Rule
- Uniform Convergence of Power Series
- Continuity of Power Series
- Termwise Integration and Differentiation of Power Series

## Definitions.

- $\log(x)$ ,  $\exp(x)$ ,  $a^x$
- Hyperbolic Functions
- Inverse Functions
- Taylor Polynomials
- Limits Involving Infinity
- Sequences and Series
- Telescoping, Geometric, and Alternating Series
- Absolute and Conditional Convergence
- Integrals Involving Infinity
- Power Series
- Radius/Interval of Convergence

### Derivatives.

- Integrals:  $\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt$
- Inverse Functions:  $\frac{d}{dx}f^{-1}(x)$
- Exponential Functions:  $\frac{d}{dx}g(x)^{f(x)}$

Date: Spring, 2000.

# Techniques of Integration.

- Substitution
- Integration by Parts
- Partial Fractions
- Trig Substitutions
- Integrals Involving Rational Functions of sin(x) and cos(x)
- Computing Improper Integrals

# Taylor Polynomials.

- Calculating Taylor Polynomials
- Estimating the Error Term
- $\bullet$  o-symbols

### Limits.

- Indeterminate Forms
- ullet Calculating Limits with o-symbols
- L'Hôpital's Rule and Extensions
- Limits of Sequences

#### Series.

- Summing Telescoping and Geometric Series
- Testing Series for Convergence: Absolute and Conditional
- Determining Radius/Interval of Convergence of a Power Series
- Determining the Power Series of a Function
- Standard Power Series:  $1/(1 \pm x)$ ,  $\log(1 \pm x)$ ,  $e^x$ ,  $\sin(x)$ ,  $\cos(x)$
- Summing Power Series using Standard Series, Derivatives, and Integrals