GABRIEL'S HORN

MATH 166: HONORS CALCULUS II
"Gabriel's horn" is the surface generated by revolving the graph of $y=1 / x$ from 1 to ∞ about the x-axis.

To calculate the volume of the solid of revolution bounded by the horn, note that the solid is filled out by infinitesimally thin cylinders of radius $1 / x$ and width $d x$. So, over any finite interval $[1, a]$ the volume is given by

$$
\int_{1}^{a} \pi\left(\frac{1}{x}\right)^{2} d x=\pi\left(1-\frac{1}{a}\right)
$$

As $a \rightarrow \infty$, the volume approaches π which is a resonable definition of the volume even though the solid has infinite extent.

On the other hand, it can be shown that the surface of Gabriel's horn over any finite interval $[1, a]$ is given by

$$
\int_{1}^{a} 2 \pi \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x>\int_{1}^{a} 2 \pi \frac{1}{x} d x=2 \pi \log (a)
$$

Since $2 \pi \log (a) \rightarrow \infty$ as $a \rightarrow \infty$, the surface area of Gabriel's horn cannot be assigned a finite value. This counter-intuitive situation could be summarized by saying that Gabriel's horn holds a finite amount of paint, but not enough to cover its inside surface!

[^0]
[^0]: Date: Spring 2000.

