CONSTRUCTION OF THE PENTAGON

MATH 166: HONORS CALCULUS II

(1) Construct a circle and a diameter $A B$.
(2) Construct a another diameter perpendicular to $A B$ which meets the circle at D. (Find the point C by marking an arc centered at A with radius $A B$ and then doing the same with B as the center.)
(3) Bisect the segment $D O$ at the point G. (Find the points E and F on the circle by marking arcs centered at D with radius $D O$.)
(4) Construct an arc centered at G with radius $G B$ so that it meets the perpendicular diameter at a point H.
(5) Construct an arc centered at A with radius $A H$ so that it meets the circle at the point I. Mark off the point J with an arc centered at A with radius $A I$. Mark off the points K and L with arcs centered at I and J, respectively, and radius $A I$. The points A, I, J, K, and L are the vertices of a regular pentagon.

Proof. Let us assume for simplicity that the radius of the circle is 1. (For a circle of radius R, all lengths below would be scaled by a factor of R.) We first calculate some lengths in the diagram. From the right triangle $G O B$, we compute that $|G B|=\sqrt{(1 / 2)^{2}+1}=\sqrt{5} / 2$. Thus, $|D H|=1 / 2+\sqrt{5} / 2=\phi$, the golden mean, and $|O H|=|D H|-1=-1 / 2+\sqrt{5} / 2$. From the right triangle $A O H,|A H|=$ $\sqrt{1+(-1 / 2+\sqrt{5} / 2)^{2}}=\sqrt{(5-\sqrt{5}) / 2}$. Let $A I J K L$ be the pentagon inscribed in the circle as indicated in the diagram. The proof will be complete if we show that $|A H|=|A I|$.

Let $s=|A I|$. Consider the isosceles triangle $A O I$. Since the pentagon in comprised of 5 of these triangles all sharing the vertex O, the angle $A O I$ is clearly $2 \pi / 5$. Bisecting this angle produces two equal right triangles in $A O I$ and we conclude $s / 2=\sin (\pi / 5)$. Applying the formula $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\sin (\beta) \cos (\alpha)$ repeatedly, we arrive at the equation

$$
\sin (5 \theta)=16 \sin ^{5}(\theta)-20 \sin ^{3}(\theta)+5 \sin (\theta)
$$

Letting $\theta=\pi / 5$ we obtain

$$
0=16(s / 2)^{5}-20(s / 2)^{3}+5(s / 2)=(s / 2)\left(s^{4}-5 s^{2}+5\right)
$$

Since $0<\sin (\pi / 5)<\sin (\pi / 4)=\sqrt{2} / 2$, we are forced to conclude using the quadratic formula that $s^{2}=(5-\sqrt{5}) / 2$, and $s=\sqrt{(5-\sqrt{5}) / 2}$. Therefore, $|A H|=s$ as claimed.

[^0]
[^0]: Date: January, 2000.

