INTEGRABILITY ON SUBINTERVALS

MATH 166: CALCULUS II

The purpose of this note is to fill in a gap in Apostol's Calculus text. The following theorem is very useful in practice and simplifies the statements of several theorems in the text.

Theorem. Let f be a function defined on an interval $[a, b]$. If f is integrable on $[a, b]$, then f is integrable on any subinterval $[c, d] \subset[a, b]$.

Proof. We shall prove the logically equivalent statement: Suppose there exists a subinterval $[c, d] \subset[a, b]$ on which f is not integrable. Then f is not integrable on the larger interval $[a, b]$.

To show f is not integrable on $[a, b]$ we must show that there is a gap between the upper and lower integrals of f. In other words, there is a constant M such that given any step functions s and t on $[a, b]$ satisfying $s(x) \leq f(x) \leq t(x)$ for $a \leq x \leq b$, we have

$$
\int_{a}^{b} s-\int_{a}^{b} t \geq M
$$

Since we are assuming f is not integrable on $[c, d]$, we know there is a constant M such that

$$
\int_{c}^{d} s-\int_{c}^{d} t \geq M
$$

This inequality immediately implies the previous one by additivity of intervals and linearity of integrals for step functions:

$$
\int_{a}^{b} s-\int_{a}^{b} t=\int_{a}^{c}(s-t)+\int_{c}^{d}(s-t)+\int_{d}^{b}(s-t) \geq 0+M+0
$$

