SUBSTITUTIONS IN LIMITS

MATH 166: CALCULUS II

In this note we examine how to make a "change of variables" or a "substitution" when calculating limits. In the following theorem, we assume that the substitution function $u=g(x)$ is continuous and non-constant, but we do not to assume anything about the function it is composed with.

Theorem. Let $g(x)$ be a function defined on an interval $[a, b]$. Assume that $g(x)$ is continuous and non-constant on any subinterval of $[a, b]$ containing p. Define p^{*} to be the symbol p^{+}if $p=a$, or p^{-}if $p=b$, or p otherwise. Similarly, let $q=g(p)$ and define q^{*} to be the symbol q^{+}if $g(x)$ has a relative minimum at p, or q^{-}if $g(x)$ is a relative maximum at p, or q otherwise. Then for any function $f(u)$ defined in an appropriate neighborhood of q we have

$$
\lim _{x \rightarrow p *} f(g(x))=\lim _{u \rightarrow q^{*}} f(u)
$$

Proof. We must show the existence of one limit implies the existence of the other and that the two limiting values are equal.

Let us first assume $\lim _{x \rightarrow p^{*}} f(g(x))=L$ exists and prove $\lim _{u \rightarrow q^{*}} f(u)=L$. This part is similar to the proof of Theorem 3.10, Apostol p.147. By the definition of limit, given $\epsilon>0$, there exists an interval I containing p such that if $x \in I$, then $|f(g(x))-L|<\epsilon$. If $g(x)$ has a relative extremum at $x=p$, we replace I by a smaller interval containing p so that so that $q=g(p)$ is an extreme value of $g(x)$ restricted to I. Let J be a closed subinterval of I containing p. Since $g(x)$ is continuous and non-constant on any subinterval containing p, the Extreme Value Theorem and the Intermediate Value Theorem imply that the range of $g(x)$ restricted to J is also a closed interval, say $K=[c, d]$. Note that if $g(x)$ has a relative minimum at p then $q=c$, or if $g(x)$ has a relative maximum at p then $q=d$. By construction, for any $u \in K$, there is an $x \in J \subset I$ such that $u=g(x)$. Then, $|f(u)-L|=|f(g(x))-L|<\epsilon$, since $x \in I$. This proves $\lim _{u \rightarrow q^{*}} f(u)=L$.

Let us now assume $\lim _{u \rightarrow q^{*}} f(u)=L$ exists and prove $\lim _{x \rightarrow p^{*}} f(g(x))=L$. This part is similar to the proof of Theorem 3.5, Apostol p.141. By the definition of limit, given $\epsilon>0$, there exists an interval K containing q such that if $u \in K$ then $|f(u)-L|<\epsilon$. Since $g(x)$ is continuous at p (and this is all we need to assume about $g(x)$ for this part of the proof), there is an interval I containing p such that if $x \in I$ then $g(x) \in K$, which implies $|f(g(x))-L|<\epsilon$. This proves $\lim _{x \rightarrow p^{*}} f(g(x))=L$.

Example. $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x^{2}}=\lim _{u \rightarrow 0^{+}} \frac{\sin (u)}{u}=1$

[^0]Example. To see why the assumptions of the theorem are necessary, consider the function

$$
g(x)= \begin{cases}\frac{1}{n} & \text { if } \frac{1}{n+1}<|x| \leq \frac{1}{n} \text { for some } n \in \mathbf{N} \\ 0 & \text { otherwise }\end{cases}
$$

Then $g(x)$ is non-constant in any interval containing 0 and is also continuous at 0 since $\lim _{x \rightarrow 0} g(x)=g(0)=0$. However, $g(x)$ is not continuous in any interval containing 0 since for $n \in \mathbf{N}$,

$$
\lim _{x \rightarrow \frac{1}{n}^{-}} g(x)=\frac{1}{n} \neq \frac{1}{n-1}=\lim _{x \rightarrow \frac{1}{n}+} g(x)
$$

If we define

$$
f(u)= \begin{cases}1 & \text { if }|u|=\frac{1}{n} \text { for some } n \in \mathbf{N} \\ 0 & \text { otherwise }\end{cases}
$$

then clearly $f(g(x))=1$ for all $0<|x| \leq 1$ so $\lim _{x \rightarrow 0} f(g(x))=1$. Yet $\lim _{u \rightarrow 0^{+}} f(u)$ does not exist since $f(u)$ takes on the values 0 and 1 for arbitrarily small positive values of u.

[^0]: Date: Spring 2000.

