SUBSTITUTIONS IN LIMITS

MATH 166: CALCULUS II

In this note we examine how to make a “change of variables” or a “substitution”
when calculating limits. In the following theorem, we assume that the substitution
function u = g(z) is continuous and non-constant, but we do not to assume anything
about the function it is composed with.

Theorem. Let g(z) be a function defined on an interval [a,b]. Assume that g(x)
is continuous and non-constant on any subinterval of [a,b] containing p. Define p*
to be the symbol p* if p=a, or p~ if p = b, or p otherwise. Similarly, let ¢ = g(p)
and define ¢* to be the symbol q* if g(x) has a relative minimum at p, or ¢~ if g(x)
is a relative mazimum at p, or q otherwise. Then for any function f(u) defined in
an appropriate neighborhood of ¢ we have
Jim f(g(z)) = lim f(u)

Proof. We must show the existence of one limit implies the existence of the other
and that the two limiting values are equal.

Let us first assume xlir;} f(g(x)) = L exists and prove ulLqu* f(u) = L. This

part is similar to the proof of Theorem 3.10, Apostol p.147. By the definition
of limit, given € > 0, there exists an interval I containing p such that if x € I,
then |f(g(x)) — L| < e. If g(z) has a relative extremum at x = p, we replace I
by a smaller interval containing p so that so that ¢ = g(p) is an extreme value
of g(z) restricted to I. Let J be a closed subinterval of I containing p. Since
g(z) is continuous and non-constant on any subinterval containing p, the Extreme
Value Theorem and the Intermediate Value Theorem imply that the range of g(x)
restricted to J is also a closed interval, say K = [c,d]. Note that if g(x) has a
relative minimum at p then ¢ = ¢, or if g(x) has a relative maximum at p then
q = d. By construction, for any v € K, there is an « € J C I such that u = g(z).
Then, |f(u) — L| = |f(g(x)) — L| < ¢, since z € I. This proves uler;* flu) = L.

Let us now assume ulLqu* f(u) = L exists and prove Ilin;* f(g(x)) = L. This
part is similar to the proof of Theorem 3.5, Apostol p.141. By the definition of
limit, given € > 0, there exists an interval K containing ¢ such that if © € K then
|f(u)—L| < e. Since g(x) is continuous at p (and this is all we need to assume about

g(z) for this part of the proof), there is an interval I containing p such that if x € T
then g(z) € K, which implies |f(g(z)) — L| < e. This proves lim f(g(z)) =L. O
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Example. To see why the assumptions of the theorem are necessary, consider the
function

1 1
— if < |z| < — for some n € N
n n+1 n
0 otherwise

Then g(z) is non-constant in any interval containing 0 and is also continuous at 0
since lin%]g(x) = ¢(0) = 0. However, g(z) is not continuous in any interval con-
r—

taining 0 since for n € N,

lim g(x):l;é L o_ lim g(z)

p— Ll n'" n-—1 o—it

If we define 1
1 if Ju| = — for some n € N
n

0 otherwise
then clearly f(g(x)) =1forall 0 < |z| <1 so lin}) f(g(x)) =1. Yet lir(r)1+ f(u) does
T— U

not exist since f(u) takes on the values 0 and 1 for arbitrarily small positive values
of w.



