Baton Rouge Lecture

Alexander Hahn, Notre Dame

Consider a group G along with a set of generators A that satisfies $A^{-1} = A$. Many such situations exist: G a Weyl group (or more generally a Coxeter group) and A the defining hyperplane reflections; or G a classical group and A a set of special elements coming from the underlying geometry (or from a single conjugacy class of such elements); or $G = SL_n(\mathbb{Z})$ with A the set of elementary matrices; or in coding theory where interesting codes are constructed from the Cayley graph arising from certain G and A (this seems to be a hot topic currently).

Question: Given G and A and $\sigma \in G$ what is the length of $\ell(\sigma)$ of σ ? Or more precisely, are there parameters arising from σ from which $\ell(\sigma)$ be read off?

Example 1. Let G be the symmetric group on $\{1, \ldots, n\}$ and let A be the set of transpositions. Let $k(\sigma)$ be the number of orbits of σ (include the trivial orbits). Then

$$\ell(\sigma) = n - k(\sigma)$$

Example 2. Let G be the alternating group on $\{1, \ldots, n\}$ and let A be the set of three cycles, or equivalently, the set of short commutators of transpositions. This time, let $k(\sigma)$ be the number of orbits of odd cardinality (again include the trivial orbits). Then $n - k(\sigma)$ is even and

$$\ell(\sigma) = \frac{1}{2}(n - k(\sigma)) \; .$$

Now let V be a non-degenerate n-dimensional quadratic space with symmetric bilinear form B over a field F with char(F) $\neq 2$. Let $O_n(V)$ be the orthogonal group of V. For $\sigma \in O_n(V)$, let S be the subspace $S = (\sigma - 1_V)V$ of V. This S is the *space* of σ . Intuitively, this is where the "action" of σ is. In particular, there is no action on the orthogonal complement S^{\perp} of S; the fact is that $S^{\perp} = \{x \in V \mid \sigma(x) = x\}$. It turns out that dim S is even if and only if $\sigma \in O_n^+(V)$.

For instance, $\sigma = 1_V$ if and only if S = 0. If dim S = 1, then S is necessarily non-degenerate, and $\sigma = -1_S \perp 1_{S^{\perp}}$. These elements are the hyperplane reflections or symmetries. If S = Fv, denote σ by τ_v . They are involutions, i.e., they satisfy $\sigma^2 = 1_V$.

We will define properties of σ by referring to S. For example, σ is non-degenerate, degenerate, or totally degenerate if S is non-degenerate, degenerate, or totally degenerate, i.e., if the radical rad $S = S \cap S^{\perp}$ of S is zero, non-zero, or S. Similarly, σ is anisotropic if S is anisotropic. Symmetries are anisotropic. It is easy to see that σ is an involution if and only if $\sigma_{|_S} = -1_S$. In particular, involutions are non-degenerate. The degenerate elements σ with dim S = 2 are the *Eichler* transformations.

Notation: if an orthogonal transformation σ, μ, ρ, η , etc. is under consideration, then then S, U, R, and E, etc. will automatically denote its space.

Example 3. Theorem (Cartan, Scherk, Dieudonné). Let G be the group $O_n(V)$ and let A be the set of symmetries. If σ is not totally degenerate, then

$$\ell(\sigma) = \dim S \; .$$

If σ is totally degenerate, then $\ell(\sigma) = \dim S + 2$.

Note: The answer is complete and completely independent of F or V.

This example parallels Example 1. What about the analogue of Example 2?

Example 4. Let G be the commutator subgroup $\Omega_n(V)$ of $O_n(V)$ and let A be the set of short commutators of symmetries. What about $\ell(\sigma)$ in this situation?

The short answer: Nothing until recently; much more difficult; dependence on both F and V. The longer answer is the subject of this talk. Incidentally, I got interested in this question about 5 years ago thanks to John Hsia who was interested in the case F a non-dyadic local field. In this case, a complete solution is possible. I'll describe what this is; also discuss the dyadic case; then give some "global" insights.

Let $\sigma \in \Omega_n(V)$. Let $\sigma = \tau_v \tau_w \tau_v \tau_w$ be a non-trivial short commutator of symmetries. Then $S = Fv \oplus Fw$. Also, $\sigma = \tau_v \tau_{\tau_w(v)} = \tau_v \tau_{v'}$ with Q(v) = Q(v'), where Q(x) = B(x, x). Conversely, any such product is a short commutator of symmetries. It is now a direct consequence of CSD that

$$\ell(\sigma) \ge \frac{1}{2} \dim S$$
.

Now let's call $\sigma \in \Omega_n(V)$ short if $\ell(\sigma) = \frac{1}{2} \dim S$, and long otherwise. Let σ be totally degenerate. Then $\sigma \in \Omega_n(V)$ and by CSD, σ is long. CSD suggests that long ought to be the exception. True?

Goal: The same as that of CSD. Namely, the complete description of the long elements of $\Omega_n(V)$ and the determination of their length.

Theorem 1. Suppose that $\operatorname{card} \overset{*}{F}/F^2 \leq 2$. Then the totally degenerate elements σ are the only long elements in $\Omega_n(V)$ and for these, $\ell(\sigma) = \frac{1}{2} \dim S + 1$.

Easy consequence of CSD. Note that this result applies to \mathbb{C}, \mathbb{R} , and \mathbb{F}_q .

Knüppel (1993) noticed the following as a result of his investigations into of a different problem, namely the generation of the orthogonal groups by symmetries from a fixed conjugacy class.

- i) If σ is long and not an involution, then the quotient space S/rad S is anisotropic, and
- ii) If V is isotropic and σ is long, then $\ell(\sigma) = \frac{1}{2} \dim S + 1$.

Knüppel's observations are an important start towards the goal.

The Tools: The Zassenhaus splitting; the Wall form; and Reduction mod the Radical.

The Zasssenhaus splitting. Let $\sigma \in O_n(V)$. Consider the subspace

$$\{x \in V \mid (\sigma - 1_V)^k x = 0 \text{ some } k\}$$

This largest space on which σ acts as a *unipotent* transformation is non-degenerate. Let R be its orthogonal complement. Note that $\sigma R = R$ and $\sigma R^{\perp} = R^{\perp}$, and hence that $\sigma = \sigma_{|R^{\perp}} \perp \sigma_{|R}$. Put $\mu = \sigma_{|R^{\perp}} \perp 1_R$ and $\rho = 1_{R^{\perp}} \perp \sigma_{|R}$. Then

$$\sigma=\mu\,\cdot\,\rho$$

with μ unipotent and ρ non-degenerate with space R. This is the Zassenhaus splitting of σ . Note that μ and ρ commute. It turns out that σ is in $\Omega_n(V)$ if and only if μ and ρ are both in $\Omega_n(V)$. Non-trivial unipotent elements exist only for isotropic V. Eichler transformations are unipotent.

The Wall form. For $\sigma \in O_n(V)$, define

 $(,)_{\sigma}: S \times S \longrightarrow F$

by the equation $(\sigma x - x, \sigma y - y)_{\sigma} = B(\sigma x - x, y)$ for all $\sigma x - x$ and $\sigma y - y$ in S. This form is a non-degenerate, bilinear form on S (but it is almost never symmetric). Note that the space S is now equipped both with $(,)_{\sigma}$ and the restriction of B. When $(,)_{\sigma}$ is under consideration we will denote S by S_{σ} .

One can check that σ is an involution if and only if $(,)_{\sigma}$ is symmetric, and that in this case, $(,)_{\sigma} = -\frac{1}{2}B$. Also, σ is totally degenerate if and only if S_{σ} is alternating. Let $\sigma = \mu \rho$ be the Zassenhaus splitting of σ with μ totally degenerate and ρ an involution. What can you say about S_{σ} ?

The key facts are these. Let W_1 be a non-degenerate subspace of S_{σ} . Then there is a unique $\sigma_1 \in O_n(V)$ - the transformation belonging to W_1 - such that $(S_1)_{\sigma_1} = W_1$. If $S_{\sigma} = W_1 \perp W_2$ (W_2 is the right complement of W_1), then $\sigma = \sigma_1 \cdot \sigma_2$, where σ_2 belongs to W_2 . Relevant to the current context is that σ is short if and only if S_{σ} is a (right) orthogonal sum of planes of discriminant one that are non-alternating. (As an aside, the Wall form supplies a useful definition of the spinor norm via disc S_{σ}).

The *Reduction mod the Radical* construction. Let M be any subspace of V. The quotient space $M/\mathrm{rad} M$ becomes a non-degenerate quadratic space with bilinear form B' defined by

$$B'(x + \operatorname{rad} M, y + \operatorname{rad} M) = B(x, y)$$
 for all $x, y \in M$.

Let O[M] be the subgroup of $O_n(V)$ defined by

$$O[M] = \{ \eta \in O_n(V) \mid E \subseteq M \}.$$

Let $\eta \in O[M]$. Since $E^{\perp} \supseteq M^{\perp} \supseteq \operatorname{rad} M$, we see that $\eta_{\operatorname{lrad} M} = 1_{\operatorname{rad} M}$. So we can define

$$\sim$$
 : $O[M] \longrightarrow O(M/\mathrm{rad}\ M)$

by $\tilde{\eta}(x + \operatorname{rad} M) = \eta x + \operatorname{rad} M$. For $v \in M$ anisotropic, $\tau_v \in O[M]$ and $\tilde{\tau}_v = \tau_{v + \operatorname{rad} M}$. Check that

$$\ker \simeq = \{ \eta \in O[M] \mid (\eta - 1_V)M \subseteq \operatorname{rad} M \}.$$

If η is in the kernel then,

$$(\eta - 1_V)^3 V \subseteq (\eta - 1_V)^2 M \subseteq (\eta - 1_V) (\operatorname{rad} M) = 0.$$

In particular, η is unipotent.

Theorem 2. Let $\sigma \in \Omega_n(V)$ be long with σ neither totally degenerate nor an involution. Let $\sigma = \mu \rho$ be the Zassenhaus splitting of σ . Then

- i) The space of μ satisfies $U = \operatorname{rad} U \perp T$ with T anisotropic and the space of σ satisfies $S = \operatorname{rad} U \perp (T \perp R)$ with $T \perp R$ anisotropic.
- ii) The unipotent element μ is special. This means that μ is a product of $\frac{1}{2}(\dim U)$ commuting Eichler transformations and that $(\mu - 1_V)^3 = 0$. (The totally degenerate elements are precisely the unipotents with $(\mu - 1_V)^2 = 0$.)
- iii) The non-degenerate element ρ is anisotropic and long.

Part (i) follows from the Zassenhaus splitting and the insight of Knüppel. That $(\mu - 1_V)^3 = 0$ is a quick consequence of reduction with $U/\operatorname{rad} U$. Namely, because μ is unipotent, $\tilde{\mu} \in O(U/\operatorname{rad} U)$ is unipotent. But this quotient is anisotropic, so $\mu \in \ker^{\sim}$. That ρ is anisotropic follows from (i); the rest of (ii) and (iii) are labor intensive.

This Theorem - it holds for any F - reduces the problem to the following two questions:

- A) Determine which of the elements in Theorem 2 are actually long and compute their lengths. (Recall that if V is isotropic, then the length of any long element σ is $\frac{1}{2} \dim S + 1$.)
- **B)** Classify all long anisotropic elements ρ in $\Omega_n(V)$.

Let's see what the answers are in case F is a local field. We begin with Question A:

Proposition 3. Suppose that F is a local field and consider any element $\sigma = \mu \rho \in \Omega_n(V)$ that satisfies conditions (i) - (iii) of Theorem 2. Then T = 0, μ is totally degenerate, dim R = 4, and σ is long. Finally, $\ell(\sigma) = \frac{1}{2} \dim S + 1$. In particular, all long elements of $\Omega_n(V)$ (excluding involutions and totally degenerate elements) can be constructed by splicing totally degenerate and long anisotropic elements together.

That T = 0 and dim R = 4, follows easily from the fact that $4 \leq \dim R \leq \dim (T \perp R) \leq 4$. That σ is long comes from a combination of reduction mod the radical with properties of the Wall form. In view of Knüppel's result, $\ell(\sigma) = \frac{1}{2} \dim S + 1$ only needs verification for dim V = 4.

In reference to Question B, there is a sharp dichotomy between the non-dyadic case and the dyadic case.

Proposition 4. If F is non-dyadic, then anisotropic long elements occur only for $n \ge 5$ and they are the following:

$$\rho = 1 \perp \rho_{|R}$$
 with $\rho_{|R} \in O'_4(R) - \Omega_4(R)$.

Such elements exist because the index of $\Omega_4(R)$ in $O'_4(R)$ is two and they are all long. To prove the proposition, it is enough to verify that all elements in $\Omega_4(V)$ are short.

Suppose that F is dyadic. Here the matter is much more subtle. In this case, $O'_4(R) = \Omega_4(R)$. So there are no long elements of the type above. It follows that all anisotropic long elements have the form

$$\rho = 1 \perp \rho_{|_{R}}$$
 with $\rho_{|_{R}}$ long in $\Omega_4(R)$.

So we need to classify the long elements in $\Omega_4(V)$ with V anisotropic. Milnor [8] provides a strategy:

Let V be any non-degenerate quadratic space over a local field F (of characteristic not 2). Let m(X) be an irreducible monic polynomial in F[X]. Then m(X) is the minimal polynomial of an element of $O_n(V)$ if and only if its degree k divides n, it is symmetric, and disc $V = (m(1)m(-1))^{\frac{n}{k}}F^2$. Given such a polynomial m(X), then - and this is one of the main results of Milnor's paper - there is precisely one conjugacy class of elements in $O_n(V)$ with minimal polynomial m(X). Notice that if ρ is long and anisotropic in $\Omega_n(V)$ then the entire conjugacy class of σ (in $O_n(V)$) consists of long and anisotropic elements of $\Omega_n(V)$. Thus when looking for long elements, we are looking for conjugacy classes of them.

Turn to the study of the long elements in $\Omega_4(V) = O'_4(V)$ (with F dyadic and V anisotropic). Let m(X) be the minimal polynomial of a long element $\sigma \in \Omega_4(V)$. The factor X + 1 is the only linear factor that m(X) can have.

1) Suppose deg m(X) = 1. Then m(X) = X + 1. So $\sigma = -1_V$. This element is in $\Omega_4(V)$, and it is long if and only if $-1 \in F^2$.

2) Suppose deg m(X) = 2. If m(X) is reducible, then $m(X) = (X+1)^2$. But this means that $-\sigma$ is unipotent. But V anisotropic means that $-\sigma = 1_V$, impossible. So m(X) is irreducible, hence $m(X) = X^2 - cX + 1$. It turns out that the unique corresponding conjugacy class is long if and only if $c - 2 \in F^2$. If σ has a minimal polynomial of this form, then σ is in $\Omega_4(V)$.

3) Suppose deg m(X) = 3. By Milnor, m(X) is reducible. So $m(X) = (X+1)(X^2 - cX + 1)$ with $X^2 - cX + 1$ irreducible. (The quadratic factor must be irreducible by the "unipotent" argument above.) In this case, -1 and c - 2 must both be in F^2 . This case arises.

4) Suppose deg m(X) = 4. In this case, either

a)
$$m(X) = (X^2 - cX + 1)(X^2 - dX + 1)$$
 with both factors irreducible, or
b) $m(X) = X^4 - cX^3 - dX^2 - cX + 1$ is irreducible.

I know that (a) arises. Most probably, (b) does too.

The "Long" Criterion: Let $\sigma \in \Omega_4(V)$. Then σ is long if and only if

$$Q(\sigma x - x) = -\epsilon_x^2 Q(x)$$
 for all $x \in V$ and some $-\epsilon_x \in F$.

The Long Criterion immediately provides the conclusion in (1). It turns out that case (2) is precisely the situation where all ϵ_x^2 are equal, namely to c-2. What about (3) and (4a)? These situations are similar. In each case, the factorization $m(X) = p_1(X)p_2(X)$ provides two unique planes, namely $U = p_1(\sigma)V$ and $W = p_2(\sigma)V$ on which σ acts. Check that $V = U \perp W$. In order for σ to be long, the Long Criterion that has to hold for both U and W it must be extendable to all of V.

Let's consider case (3). Note that $\sigma_{|W} = -1_W$. By the Long Criterion applied to U and W we get c-2 and -1 both in F^2 . So put $c-2 = s^2$ and $-1 = i^2$. Notice that $Q(U) \cap Q(W)$ is empty, otherwise V would contain a plane of discriminant $F^2 = -F^2$; not possible because V is anisotropic. Put

$$s = -2it^{-1}$$
 for some $t \in \overset{*}{F}$ and set $B = \frac{Q(U)}{Q(\dot{W})}$,

where \dot{U} and \dot{W} denote the non-zero elements of U and W. The extendability of the Long Criterion to V translates into the question of the existence - and precise description - of the elements $t \in \overset{*}{F}$ such that

(*)
$$1 + \frac{t^2 - 1}{1 + \beta} \in F^2$$
 for all $\beta \in B$.

Do such t exist? YES! To see this rewrite the above as

$$\frac{1+\beta-\beta+t^{2\beta}}{1+\beta} \ = 1+\frac{t^2-1}{1+\beta^{-1}} \ .$$

Now observe that $\{|1 + \beta| \mid \beta \in Q(W)\}$ is bounded below by |4|. For suppose that $|1 + \beta| \leq |4\pi|$ for some β . Then $1 + \beta = 4\alpha\pi$ for some local integer α ; but this means that $-\beta = 1 - 4\alpha\pi \in F^2$ by the Local Square Theorem. Because $-\beta \in Q(W)$ (notice that $-1 \in Q(U)$)

), we have a contradiction. Now choose tsuch that $-t^2 - 1$ is small enough and apply the Local Square Theorem again to get (*).

 $i^2 =$ Then Q(U) is a subgroup of index 2 of F. If Global Fields?

Bibliography

[1] E. Artin, Geometric Algebra, Wiley Interscience, New York, 1966.

[2] E. W. Ellers and J. Malzan, Products of reflections in the kernel of the spinorial Norm, Geom. Ded. 36 (1990), 279-285.

[3] A. J. Hahn, Unipotent elements and the spinor norms of Wall and Zassenhaus, *Archiv der Math.*, 32 (1979), 114-122.

[4] A. J. Hahn, The elements of the orthogonal group $\Omega_n(V)$ as products of commutators of symmetries, J. Alg., 1995

[5] A. J. Hahn and O. T. O'Meara, The Classical Groups and K-Theory, *Grundlehren der Mathe*matik, Springer-Verlag, 1989.

[6] F. Knüppel, Products of simple isometries of given conjugacy types, *Forum Math.* 5 (1993), 441-458.

[7] T. Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, Reading MA, 1973.

[8] J. Milnor, On Isometries of Inner Product Spaces, Inventiones Math. 8 (1969), 83-97.

[9] O. T. O'Meara, Introduction to Quadratic Forms, *Grundlehren der Mathematik*, Springer-Verlag, 1971.