Baton Rouge Lecture

Alexander Hahn, Notre Dame

Consider a group G along with a set of generators A that satisfies $A^{-1}=A$. Many such situations exist: G a Weyl group (or more generally a Coxeter group) and A the defining hyperplane reflections; or G a classical group and A a set of special elements coming from the underlying geometry (or from a single conjugacy class of such elements); or $G=S L_{n}(\mathbb{Z})$ with A the set of elementary matrices; or in coding theory where interesting codes are constructed from the Cayley graph arising from certain G and A (this seems to be a hot topic currently).

Question: Given G and A and $\sigma \in G$ what is the length of $\ell(\sigma)$ of σ ? Or more precisely, are there parameters arising from σ from which $\ell(\sigma)$ be read off?

Example 1. Let G be the symmetric group on $\{1, \ldots, n\}$ and let A be the set of transpositions. Let $k(\sigma)$ be the the number of orbits of σ (include the trivial orbits). Then

$$
\ell(\sigma)=n-k(\sigma) .
$$

Example 2. Let G be the alternating group on $\{1, \ldots, n\}$ and let A be the set of three cycles, or equivalently, the set of short commutators of transpositions. This time, let $k(\sigma)$ be the number of orbits of odd cardinality (again include the trivial orbits). Then $n-k(\sigma)$ is even and

$$
\ell(\sigma)=\frac{1}{2}(n-k(\sigma)) .
$$

Now let V be a non-degenerate n-dimensional quadratic space with symmetric bilinear form B over a field F with $\operatorname{char}(F) \neq 2$. Let $O_{n}(V)$ be the orthogonal group of V. For $\sigma \in O_{n}(V)$, let S be the subspace $S=\left(\sigma-1_{V}\right) V$ of V. This S is the space of σ. Intuitively, this is where the "action" of σ is. In particular, there is no action on the orthogonal complement S^{\perp} of S; the fact is that $S^{\perp}=\{x \in V \mid \sigma(x)=x\}$. It turns out that $\operatorname{dim} S$ is even if and only if $\sigma \in O_{n}^{+}(V)$.

For instance, $\sigma=1_{V}$ if and only if $S=0$. If $\operatorname{dim} S=1$, then S is necessarily non-degenerate, and $\sigma=-1_{S} \perp 1_{S^{\perp}}$. These elements are the hyperplane reflections or symmetries. If $S=F v$, denote σ by τ_{v}. They are involutions, i.e., they satisfy $\sigma^{2}=1_{V}$.

We will define properties of σ by referring to S. For example, σ is non-degenerate, degenerate, or totally degenerate if S is non-degenerate, degenerate, or totally degenerate, i.e., if the radical $\operatorname{rad} S=S \cap S^{\perp}$ of S is zero, non-zero, or S. Similarly, σ is anisotropic if S is anisotropic. Symmetries are anisotropic. It is easy to see that σ is an involution if and only if $\sigma_{\text {IS }}=-1_{S}$. In particular, involutions are non-degenerate. The degenerate elements σ with $\operatorname{dim} S=2$ are the Eichler transformations.

Notation: if an orthogonal transformation σ, μ, ρ, η, etc. is under consideration, then then S, U, R, and E, etc. will automatically denote its space.

Example 3. Theorem (Cartan, Scherk, Dieudonné). Let G be the group $O_{n}(V)$ and let A be the set of symmetries. If σ is not totally degenerate, then

$$
\ell(\sigma)=\operatorname{dim} S
$$

If σ is totally degenerate, then $\ell(\sigma)=\operatorname{dim} S+2$.
Note: The answer is complete and completely independent of F or V.
This example parallels Example 1. What about the analogue of Example 2?
Example 4. Let G be the commutator subgroup $\Omega_{n}(V)$ of $O_{n}(V)$ and let A be the set of short commutators of symmetries. What about $\ell(\sigma)$ in this situation?

The short answer: Nothing until recently; much more difficult; dependence on both F and V. The longer answer is the subject of this talk. Incidentally, I got interested in this question about 5 years ago thanks to John Hsia who was interested in the case F a non-dyadic local field. In this case, a complete solution is possible. I'll describe what this is; also discuss the dyadic case; then give some "global" insights.

Let $\sigma \in \Omega_{n}(V)$. Let $\sigma=\tau_{v} \tau_{w} \tau_{v} \tau_{w}$ be a non-trivial short commutator of symmetries. Then $S=$ $F v \oplus F w$. Also, $\sigma=\tau_{v} \tau_{\tau_{w}(v)}=\tau_{v} \tau_{v^{\prime}}$ with $Q(v)=Q\left(v^{\prime}\right)$, where $Q(x)=B(x, x)$. Conversely, any such product is a short commutator of symmetries. It is now a direct consequence of CSD that

$$
\ell(\sigma) \geq \frac{1}{2} \operatorname{dim} S
$$

Now let's call $\sigma \in \Omega_{n}(V)$ short if $\ell(\sigma)=\frac{1}{2} \operatorname{dim} S$, and long otherwise. Let σ be totally degenerate. Then $\sigma \in \Omega_{n}(V)$ and by CSD, σ is long. CSD suggests that long ought to be the exception. True?

Goal: The same as that of CSD. Namely, the complete description of the long elements of $\Omega_{n}(V)$ and the determination of their length.

Theorem 1. Suppose that $\operatorname{card} \stackrel{*}{F} / \stackrel{*}{F^{2}} \leq 2$. Then the totally degenerate elements σ are the only long elements in $\Omega_{n}(V)$ and for these, $\ell(\sigma)=\frac{1}{2} \operatorname{dim} S+1$.

Easy consequence of CSD. Note that this result applies to \mathbb{C}, \mathbb{R}, and \mathbb{F}_{q}.

Knüppel (1993) noticed the following as a result of his investigations into of a different problem, namely the generation of the orthogonal groups by symmetries from a fixed conjugacy class.
i) If σ is long and not an involution, then the quotient space $S / \operatorname{rad} S$ is anisotropic, and
ii) If V is isotropic and σ is long, then $\ell(\sigma)=\frac{1}{2} \operatorname{dim} S+1$.

Knüppel's observations are an important start towards the goal.

The Tools: The Zassenhaus splitting; the Wall form; and Reduction mod the Radical.

The Zasssenhaus splitting. Let $\sigma \in O_{n}(V)$. Consider the subspace

$$
\left\{x \in V \mid\left(\sigma-1_{V}\right)^{k} x=0 \text { some } k\right\} .
$$

This largest space on which σ acts as a unipotent transformation is non-degenerate. Let R be its orthogonal complement. Note that $\sigma R=R$ and $\sigma R^{\perp}=R^{\perp}$, and hence that $\sigma=\sigma_{\left.\right|_{R^{\perp}}} \perp \sigma_{\left.\right|_{R}}$. Put $\mu=\sigma_{\left.\right|_{R^{\perp}}} \perp 1_{R}$ and $\rho=1_{R^{\perp}} \perp \sigma_{\left.\right|_{R}}$. Then

$$
\sigma=\mu \cdot \rho
$$

with μ unipotent and ρ non-degenerate with space R. This is the Zassenhaus splitting of σ. Note that μ and ρ commute. It turns out that σ is in $\Omega_{n}(V)$ if and only if μ and ρ are both in $\Omega_{n}(V)$. Non-trivial unipotent elements exist only for isotropic V. Eichler transformations are unipotent.

The Wall form. For $\sigma \in O_{n}(V)$, define

$$
(,)_{\sigma}: S \times S \longrightarrow F
$$

by the equation $(\sigma x-x, \sigma y-y)_{\sigma}=B(\sigma x-x, y)$ for all $\sigma x-x$ and $\sigma y-y$ in S. This form is a non-degenerate, bilinear form on S (but it is almost never symmetric). Note that the space S is now equipped both with $(,)_{\sigma}$ and the restriction of B. When $(,)_{\sigma}$ is under consideration we will denote S by S_{σ}.

One can check that σ is an involution if and only if $(,)_{\sigma}$ is symmetric, and that in this case, $(,)_{\sigma}=-\frac{1}{2} B$. Also, σ is totally degenerate if and only if S_{σ} is alternating. Let $\sigma=\mu \rho$ be the Zassenhaus splitting of σ with μ totally degenerate and ρ an involution. What can you say about S_{σ} ?

The key facts are these. Let W_{1} be a non-degenerate subspace of S_{σ}. Then there is a unique $\sigma_{1} \in O_{n}(V)$ - the transformation belonging to W_{1} - such that $\left(S_{1}\right)_{\sigma_{1}}=W_{1}$. If $S_{\sigma}=W_{1} \perp W_{2}\left(W_{2}\right.$ is the right complement of W_{1}), then $\sigma=\sigma_{1} \cdot \sigma_{2}$, where σ_{2} belongs to W_{2}. Relevant to the current context is that σ is short if and only if S_{σ} is a (right) orthogonal sum of planes of discriminant one that are non-alternating. (As an aside, the Wall form supplies a useful definition of the spinor norm via disc S_{σ}).

The Reduction mod the Radical construction. Let M be any subspace of V. The quotient space $M / \operatorname{rad} M$ becomes a non-degenerate quadratic space with bilinear form B^{\prime} defined by

$$
B^{\prime}(x+\operatorname{rad} M, y+\operatorname{rad} M)=B(x, y) \text { for all } x, y \in M
$$

Let $O[M]$ be the subgroup of $O_{n}(V)$ defined by

$$
O[M]=\left\{\eta \in O_{n}(V) \mid E \subseteq M\right\}
$$

Let $\eta \in O[M]$. Since $E^{\perp} \supseteq M^{\perp} \supseteq \operatorname{rad} M$, we see that $\eta_{\operatorname{lrad} M}=1_{\mathrm{rad} M}$. So we can define

$$
\sim: O[M] \longrightarrow O(M / \operatorname{rad} M)
$$

by $\tilde{\eta}(x+\operatorname{rad} M)=\eta x+\operatorname{rad} M$. For $v \in M$ anisotropic, $\tau_{v} \in O[M]$ and $\tilde{\tau}_{v}=\tau_{v+\operatorname{rad} M}$. Check that

$$
\operatorname{ker}^{\sim}=\left\{\eta \in O[M] \mid\left(\eta-1_{V}\right) M \subseteq \operatorname{rad} M\right\} .
$$

If η is in the kernel then,

$$
\left(\eta-1_{V}\right)^{3} V \subseteq\left(\eta-1_{V}\right)^{2} M \subseteq\left(\eta-1_{V}\right)(\operatorname{rad} M)=0
$$

In particular, η is unipotent.

Theorem 2. Let $\sigma \in \Omega_{n}(V)$ be long with σ neither totally degenerate nor an involution. Let $\sigma=\mu \rho$ be the Zassenhaus splitting of σ. Then
i) The space of μ satisfies $U=\operatorname{rad} U \perp T$ with T anisotropic and the space of σ satisfies $S=\operatorname{rad} U \perp(T \perp R)$ with $T \perp R$ anisotropic.
ii) The unipotent element μ is special. This means that μ is a product of $\frac{1}{2}(\operatorname{dim} U)$ commuting Eichler transformations and that $\left(\mu-1_{V}\right)^{3}=0$. (The totally degenerate elements are precisely the unipotents with $\left(\mu-1_{V}\right)^{2}=0$.)
iii) The non-degenerate element ρ is anisotropic and long.

Part (i) follows from the Zassenhaus splitting and the insight of Knüppel. That $\left(\mu-1_{V}\right)^{3}=0$ is a quick consequence of reduction with $U / \operatorname{rad} U$. Namely, because μ is unipotent, $\tilde{\mu} \in O(U / \operatorname{rad} U)$ is unipotent. But this quotient is anisotropic, so $\mu \in \operatorname{ker} \sim$. That ρ is anisotropic follows from (i); the rest of (ii) and (iii) are labor intensive.

This Theorem - it holds for any F - reduces the problem to the following two questions:
A) Determine which of the elements in Theorem 2 are actually long and compute their lengths. (Recall that if V is isotropic, then the length of any long element σ is $\frac{1}{2} \operatorname{dim} S+1$.)
B) Classify all long anisotropic elements ρ in $\Omega_{n}(V)$.

Let's see what the answers are in case F is a local field. We begin with Question A:
Proposition 3. Suppose that F is a local field and consider any element $\sigma=\mu \rho \in \Omega_{n}(V)$ that satisfies conditions (i) - (iii) of Theorem 2. Then $T=0, \mu$ is totally degenerate, $\operatorname{dim} R=4$, and σ is long. Finally, $\ell(\sigma)=\frac{1}{2} \operatorname{dim} S+1$. In particular, all long elements of $\Omega_{n}(V)$ (excluding involutions and totally degenerate elements) can be constructed by splicing totally degenerate and long anisotropic elements together.

That $T=0$ and $\operatorname{dim} R=4$, follows easily from the fact that $4 \leq \operatorname{dim} R \leq \operatorname{dim}(T \perp R) \leq 4$. That σ is long comes from a combination of reduction mod the radical with properties of the Wall form. In view of Knüppel's result, $\ell(\sigma)=\frac{1}{2} \operatorname{dim} S+1$ only needs verification for $\operatorname{dim} V=4$.

In reference to Question B, there is a sharp dichotomy between the non-dyadic case and the dyadic case.

Proposition 4. If F is non-dyadic, then anisotropic long elements occur only for $n \geq 5$ and they are the following:

$$
\rho=1 \perp \rho_{\left.\right|_{R}} \quad \text { with } \quad \rho_{\mid R} \in O_{4}^{\prime}(R)-\Omega_{4}(R) .
$$

Such elements exist because the index of $\Omega_{4}(R)$ in $O_{4}^{\prime}(R)$ is two and they are all long. To prove the proposition, it is enough to verify that all elements in $\Omega_{4}(V)$ are short.

Suppose that F is dyadic. Here the matter is much more subtle. In this case, $O_{4}^{\prime}(R)=\Omega_{4}(R)$. So there are no long elements of the type above. It follows that all anisotropic long elements have the form

$$
\rho=1 \perp \rho_{\left.\right|_{R}} \quad \text { with } \quad \rho_{\left.\right|_{R}} \text { long in } \Omega_{4}(R) .
$$

So we need to classify the long elements in $\Omega_{4}(V)$ with V anisotropic. Milnor [8] provides a strategy:
Let V be any non-degenerate quadratic space over a local field F (of characteristic not 2). Let $m(X)$ be an irreducible monic polynomial in $F[X]$. Then $m(X)$ is the minimal polynomial of an element of $O_{n}(V)$ if and only if its degree k divides n, it is symmetric, and disc $V=(m(1) m(-1))^{\frac{n}{k}} F^{*}$. Given such a polynomial $m(X)$, then - and this is one of the main results of Milnor's paper - there is precisely one conjugacy class of elements in $O_{n}(V)$ with minimal polynomial $m(X)$. Notice that if ρ is long and anisotropic in $\Omega_{n}(V)$ then the entire conjugacy class of σ (in $O_{n}(V)$) consists of long and anisotropic elements of $\Omega_{n}(V)$. Thus when looking for long elements, we are looking for conjugacy classes of them.

Turn to the study of the long elements in $\Omega_{4}(V)=O_{4}^{\prime}(V)$ (with F dyadic and V anisotropic). Let $m(X)$ be the minimal polynomial of a long element $\sigma \in \Omega_{4}(V)$. The factor $X+1$ is the only linear factor that $m(X)$ can have.

1) Suppose deg $m(X)=1$. Then $m(X)=X+1$. So $\sigma=-1_{V}$. This element is in $\Omega_{4}(V)$, and it is long if and only if $-1 \in \stackrel{*}{F}^{2}$.
2) Suppose deg $m(X)=2$. If $m(X)$ is reducible, then $m(X)=(X+1)^{2}$. But this means that $-\sigma$ is unipotent. But V anisotropic means that $-\sigma=1_{V}$, impossible. So $m(X)$ is irreducible, hence $m(X)=X^{2}-c X+1$. It turns out that the unique corresponding conjugacy class is long if and only if $c-2 \in \stackrel{*}{F}^{2}$. If σ has a minimal polynomial of this form, then σ is in $\Omega_{4}(V)$.
3) Suppose deg $m(X)=3$. By Milnor, $m(X)$ is reducible. So $m(X)=(X+1)\left(X^{2}-c X+1\right)$ with $X^{2}-c X+1$ irreducible. (The quadratic factor must be irreducible by the "unipotent" argument above.) In this case, -1 and $c-2$ must both be in $\stackrel{*}{F^{2}}$. This case arises.
4) Suppose $\operatorname{deg} m(X)=4$. In this case, either
a) $m(X)=\left(X^{2}-c X+1\right)\left(X^{2}-d X+1\right)$ with both factors irreducible, or
b) $m(X)=X^{4}-c X^{3}-d X^{2}-c X+1$ is irreducible.

I know that (a) arises. Most probably, (b) does too.
The "Long" Criterion: Let $\sigma \in \Omega_{4}(V)$. Then σ is long if and only if

$$
Q(\sigma x-x)=-\epsilon_{x}^{2} Q(x) \text { for all } x \in V \text { and some }-\epsilon_{x} \in \stackrel{*}{F}
$$

The Long Criterion immediately provides the conclusion in (1). It turns out that case (2) is precisely the situation where all ϵ_{x}^{2} are equal, namely to $c-2$. What about (3) and (4a)? These situations are similar. In each case, the factorization $m(X)=p_{1}(X) p_{2}(X)$ provides two unique planes, namely $U=p_{1}(\sigma) V$ and $W=p_{2}(\sigma) V$ on which σ acts. Check that $V=U \perp W$. In order for σ to be long, the Long Criterion that has to hold for both U and W it must be extendable to all of V.

Let's consider case (3). Note that $\sigma_{W}=-1_{W}$. By the Long Criterion applied to U and W we get $c-2$ and -1 both in $\stackrel{*}{F}^{2}$. So put $c-2=s^{2}$ and $-1=i^{2}$. Notice that $\left.\left.Q \stackrel{*}{U} U\right) \cap Q \stackrel{*}{W}\right)$ is empty, otherwise V would contain a plane of discriminant $\stackrel{*}{F}^{2}=-\stackrel{*}{F}^{2}$; not possible because V is anisotropic. Put

$$
s=-2 i t^{-1} \text { for some } t \in \stackrel{*}{F} \text { and set } B=\frac{Q(\dot{U})}{Q(\dot{W})},
$$

where \dot{U} and \dot{W} denote the non-zero elements of U and W. The extendability of the Long Criterion to V translates into the question of the existence - and precise description - of the elements $t \in \stackrel{*}{F}$ such that

$$
\text { (*) } 1+\frac{t^{2}-1}{1+\beta} \in \stackrel{*}{F^{2}} \text { for all } \beta \in B
$$

Do such t exist? YES! To see this rewrite the above as

$$
\frac{1+\beta-\beta+t^{2 \beta}}{1+\beta}=1+\frac{t^{2}-1}{1+\beta^{-1}}
$$

Now observe that $\{|1+\beta| \mid \beta \in Q(\stackrel{*}{W})\}$ is bounded below by $|4|$. For suppose that $|1+\beta| \leq|4 \pi|$ for some β. Then $1+\beta=4 \alpha \pi$ for some local integer α; but this means that $-\beta=1-4 \alpha \pi \in \stackrel{*}{F^{2}}$ by the Local Square Theorem. Because $-\beta \in Q(W)$ (notice that $-1 \in Q(U)$
), wehaveacontradiction.Nowchoosetsuchthat- $\mathrm{t}^{2}-1 \mid$ is small enough and apply the Local Square Theorem again to get (*).
$i^{2}=$ Then $Q \stackrel{*}{(U)}$ is a subgroup of index 2 of $\stackrel{*}{F}$. If Global Fields?

Bibliography

[1] E. Artin, Geometric Algebra, Wiley Interscience, New York, 1966.
[2] E. W. Ellers and J. Malzan, Products of reflections in the kernel of the spinorial Norm, Geom. Ded. 36 (1990), 279-285.
[3] A. J. Hahn, Unipotent elements and the spinor norms of Wall and Zassenhaus, Archiv der Math., 32 (1979), 114-122.
[4] A. J. Hahn, The elements of the orthogonal group $\Omega_{n}(V)$ as products of commmutators of symmetries, J. Alg., 1995
[5] A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Grundlehren der Mathematik, Springer-Verlag, 1989.
[6] F. Knüppel, Products of simple isometries of given conjugacy types, Forum Math. 5 (1993), 441-458.
[7] T. Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, Reading MA, 1973.
[8] J. Milnor, On Isometries of Inner Product Spaces, Inventiones Math. 8 (1969), 83-97.
[9] O. T. O'Meara, Introduction to Quadratic Forms, Grundlehren der Mathematik, Springer-Verlag, 1971.

