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Consider a group G along with a set of generators A that satisfies A−1 = A. Many such situations

exist: G a Weyl group (or more generally a Coxeter group) and A the defining hyperplane reflections;

or G a classical group and A a set of special elements coming from the underlying geometry (or from

a single conjugacy class of such elements); or G = SLn(Z) with A the set of elementary matrices;

or in coding theory where interesting codes are constructed from the Cayley graph arising from

certain G and A (this seems to be a hot topic currently).

Question: Given G and A and σ ∈ G what is the length of `(σ) of σ? Or more precisely, are there

parameters arising from σ from which `(σ) be read off?

Example 1. Let G be the symmetric group on {1, . . . , n} and let A be the set of transpositions.

Let k(σ) be the the number of orbits of σ (include the trivial orbits). Then

`(σ) = n− k(σ) .

Example 2. Let G be the alternating group on {1, . . . , n} and let A be the set of three cycles, or

equivalently, the set of short commutators of transpositions. This time, let k(σ) be the number of

orbits of odd cardinality (again include the trivial orbits). Then n− k(σ) is even and

`(σ) =
1

2
(n− k(σ)) .

Now let V be a non-degenerate n−dimensional quadratic space with symmetric bilinear form B

over a field F with char(F ) 6= 2. Let On(V ) be the orthogonal group of V . For σ ∈ On(V ), let S be

the subspace S = (σ − 1V )V of V . This S is the space of σ. Intuitively, this is where the ”action”

of σ is. In particular, there is no action on the orthogonal complement S⊥ of S; the fact is that

S⊥ = {x ∈ V | σ(x) = x}. It turns out that dim S is even if and only if σ ∈ O+
n (V ).

For instance, σ = 1V if and only if S = 0. If dim S = 1, then S is necessarily non-degenerate, and

σ = −1S ⊥ 1S⊥ . These elements are the hyperplane reflections or symmetries. If S = Fv, denote σ

by τv. They are involutions, i.e., they satisfy σ2 = 1V .

We will define properties of σ by referring to S. For example, σ is non-degenerate, degenerate,

or totally degenerate if S is non-degenerate, degenerate, or totally degenerate, i.e., if the radical

rad S = S ∩ S⊥ of S is zero, non-zero, or S. Similarly, σ is anisotropic if S is anisotropic.

Symmetries are anisotropic. It is easy to see that σ is an involution if and only if σ
S

= −1S.

In particular, involutions are non-degenerate. The degenerate elements σ with dim S = 2 are the

Eichler transformations.

Notation: if an orthogonal transformation σ, µ, ρ, η, etc. is under consideration, then then S, U, R,

and E, etc. will automatically denote its space.



Example 3. Theorem (Cartan, Scherk, Dieudonné). Let G be the group On(V ) and let A be the

set of symmetries. If σ is not totally degenerate, then

`(σ) = dim S .

If σ is totally degenerate, then `(σ) = dim S + 2.

Note: The answer is complete and completely independent of F or V .

This example parallels Example 1. What about the analogue of Example 2?

Example 4. Let G be the commutator subgroup Ωn(V ) of On(V ) and let A be the set of short

commutators of symmetries. What about `(σ) in this situation?

The short answer: Nothing until recently; much more difficult; dependence on both F and V . The

longer answer is the subject of this talk. Incidentally, I got interested in this question about 5 years

ago thanks to John Hsia who was interested in the case F a non-dyadic local field. In this case, a

complete solution is possible. I’ll describe what this is; also discuss the dyadic case; then give some

”global” insights.

Let σ ∈ Ωn(V ). Let σ = τvτwτvτw be a non-trivial short commutator of symmetries. Then S =

Fv ⊕ Fw. Also, σ = τvττw(v) = τvτv′ with Q(v) = Q(v′), where Q(x) = B(x, x). Conversely, any

such product is a short commutator of symmetries. It is now a direct consequence of CSD that

`(σ) ≥ 1

2
dim S .

Now let’s call σ ∈ Ωn(V ) short if `(σ) = 1
2
dim S, and long otherwise. Let σ be totally degenerate.

Then σ ∈ Ωn(V ) and by CSD, σ is long. CSD suggests that long ought to be the exception. True?

Goal: The same as that of CSD. Namely, the complete description of the long elements of Ωn(V )

and the determination of their length.

Theorem 1. Suppose that card
∗
F/

∗
F 2 ≤ 2. Then the totally degenerate elements σ are the only

long elements in Ωn(V ) and for these, `(σ) = 1
2
dim S + 1.

Easy consequence of CSD. Note that this result applies to C, R, and Fq.

Knüppel (1993) noticed the following as a result of his investigations into of a different problem,

namely the generation of the orthogonal groups by symmetries from a fixed conjugacy class.

i) If σ is long and not an involution, then the quotient space S/rad S is anisotropic, and

ii) If V is isotropic and σ is long, then `(σ) = 1
2
dim S + 1.
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Knüppel’s observations are an important start towards the goal.

The Tools: The Zassenhaus splitting; the Wall form; and Reduction mod the Radical.

The Zasssenhaus splitting. Let σ ∈ On(V ). Consider the subspace

{x ∈ V | (σ − 1V )kx = 0 some k}.

This largest space on which σ acts as a unipotent transformation is non-degenerate. Let R be its

orthogonal complement. Note that σR = R and σR⊥ = R⊥, and hence that σ = σ
R⊥ ⊥ σ

R
. Put

µ = σ
R⊥ ⊥ 1R and ρ = 1R⊥ ⊥ σ

R
. Then

σ = µ · ρ

with µ unipotent and ρ non-degenerate with space R. This is the Zassenhaus splitting of σ. Note

that µ and ρ commute. It turns out that σ is in Ωn(V ) if and only if µ and ρ are both in Ωn(V ).

Non-trivial unipotent elements exist only for isotropic V. Eichler transformations are unipotent.

The Wall form. For σ ∈ On(V ), define

( , )σ : S × S −→ F

by the equation (σx − x, σy − y)σ = B(σx − x, y) for all σx − x and σy − y in S. This form is a

non-degenerate, bilinear form on S (but it is almost never symmetric). Note that the space S is

now equipped both with ( , )σ and the restriction of B. When ( , )σ is under consideration we will

denote S by Sσ.

One can check that σ is an involution if and only if ( , )σ is symmetric, and that in this case,

( , )σ = −1
2
B. Also, σ is totally degenerate if and only if Sσ is alternating. Let σ = µρ be the

Zassenhaus splitting of σ with µ totally degenerate and ρ an involution. What can you say about

Sσ?

The key facts are these. Let W1 be a non-degenerate subspace of Sσ. Then there is a unique

σ1 ∈ On(V ) - the transformation belonging to W1 - such that (S1)σ1 = W1. If Sσ = W1 ⊥ W2 (W2

is the right complement of W1), then σ = σ1 · σ2, where σ2 belongs to W2. Relevant to the current

context is that σ is short if and only if Sσ is a (right) orthogonal sum of planes of discriminant one

that are non-alternating. (As an aside, the Wall form supplies a useful definition of the spinor norm

via disc Sσ).

The Reduction mod the Radical construction. Let M be any subspace of V . The quotient space

M/rad M becomes a non-degenerate quadratic space with bilinear form B′ defined by

B′(x + rad M, y + rad M) = B(x, y) for all x, y ∈ M .
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Let O[M ] be the subgroup of On(V ) defined by

O[M ] = {η ∈ On(V ) | E ⊆ M}.

Let η ∈ O[M ]. Since E⊥ ⊇ M⊥ ⊇ rad M, we see that η
rad M

= 1rad M . So we can define

∼ : O[M ] −→ O(M/rad M)

by
∼
η(x + rad M) = ηx + rad M. For v ∈ M anisotropic, τv ∈ O[M ] and

∼
τ v = τv+rad M . Check that

ker ∼ = {η ∈ O[M ] | (η − 1V )M ⊆ rad M}.

If η is in the kernel then,

(η − 1V )3V ⊆ (η − 1V )2M ⊆ (η − 1V )(rad M) = 0.

In particular, η is unipotent.

Theorem 2. Let σ ∈ Ωn(V ) be long with σ neither totally degenerate nor an involution. Let

σ = µρ be the Zassenhaus splitting of σ. Then

i) The space of µ satisfies U = rad U ⊥ T with T anisotropic and the space of σ satisfies

S = rad U ⊥ (T ⊥ R) with T ⊥ R anisotropic.

ii) The unipotent element µ is special. This means that µ is a product of 1
2
(dim U) commuting

Eichler transformations and that (µ−1V )3 = 0. (The totally degenerate elements are precisely

the unipotents with (µ− 1V )2 = 0.)

iii) The non-degenerate element ρ is anisotropic and long.

Part (i) follows from the Zassenhaus splitting and the insight of Knüppel. That (µ− 1V )3 = 0 is a

quick consequence of reduction with U/rad U. Namely, because µ is unipotent,
∼
µ ∈ O(U/rad U) is

unipotent. But this quotient is anisotropic, so µ ∈ ker ∼. That ρ is anisotropic follows from (i); the

rest of (ii) and (iii) are labor intensive.

This Theorem - it holds for any F - reduces the problem to the following two questions:

A) Determine which of the elements in Theorem 2 are actually long and compute their lengths.

(Recall that if V is isotropic, then the length of any long element σ is 1
2
dim S + 1.)

B) Classify all long anisotropic elements ρ in Ωn(V ).
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Let’s see what the answers are in case F is a local field. We begin with Question A:

Proposition 3. Suppose that F is a local field and consider any element σ = µρ ∈ Ωn(V ) that

satisfies conditions (i) - (iii) of Theorem 2. Then T = 0, µ is totally degenerate, dim R = 4,

and σ is long. Finally, `(σ) = 1
2
dim S + 1. In particular, all long elements of Ωn(V ) (excluding

involutions and totally degenerate elements) can be constructed by splicing totally degenerate and

long anisotropic elements together.

That T = 0 and dim R = 4, follows easily from the fact that 4 ≤ dim R ≤ dim (T ⊥ R) ≤ 4. That

σ is long comes from a combination of reduction mod the radical with properties of the Wall form.

In view of Knüppel’s result, `(σ) = 1
2
dim S + 1 only needs verification for dim V = 4.

In reference to Question B, there is a sharp dichotomy between the non-dyadic case and the dyadic

case.

Proposition 4. If F is non-dyadic, then anisotropic long elements occur only for n ≥ 5 and they

are the following:

ρ = 1 ⊥ ρ
R

with ρ
R
∈ O′

4(R)− Ω4(R) .

Such elements exist because the index of Ω4(R) in O′
4(R) is two and they are all long. To prove the

proposition, it is enough to verify that all elements in Ω4(V ) are short.

Suppose that F is dyadic. Here the matter is much more subtle. In this case, O′
4(R) = Ω4(R). So

there are no long elements of the type above. It follows that all anisotropic long elements have the

form

ρ = 1 ⊥ ρ
R

with ρ
R

long in Ω4(R) .

So we need to classify the long elements in Ω4(V ) with V anisotropic. Milnor [8] provides a strategy:

Let V be any non-degenerate quadratic space over a local field F (of characteristic not 2). Let m(X)

be an irreducible monic polynomial in F [X]. Then m(X) is the minimal polynomial of an element

of On(V ) if and only if its degree k divides n, it is symmetric, and disc V = (m(1)m(−1))
n
k

∗
F 2.

Given such a polynomial m(X), then - and this is one of the main results of Milnor’s paper - there

is precisely one conjugacy class of elements in On(V ) with minimal polynomial m(X). Notice that

if ρ is long and anisotropic in Ωn(V ) then the entire conjugacy class of σ (in On(V )) consists of

long and anisotropic elements of Ωn(V ). Thus when looking for long elements, we are looking for

conjugacy classes of them.

Turn to the study of the long elements in Ω4(V ) = O′
4(V ) (with F dyadic and V anisotropic). Let

m(X) be the minimal polynomial of a long element σ ∈ Ω4(V ). The factor X + 1 is the only linear

factor that m(X) can have.
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1) Suppose deg m(X) = 1. Then m(X) = X + 1. So σ = −1V . This element is in Ω4(V ), and it

is long if and only if −1 ∈
∗

F 2.

2) Suppose deg m(X) = 2. If m(X) is reducible, then m(X) = (X + 1)2. But this means that −σ

is unipotent. But V anisotropic means that −σ = 1V , impossible. So m(X) is irreducible, hence

m(X) = X2 − cX + 1. It turns out that the unique corresponding conjugacy class is long if and

only if c− 2 ∈
∗

F 2. If σ has a minimal polynomial of this form, then σ is in Ω4(V ).

3) Suppose deg m(X) = 3. By Milnor, m(X) is reducible. So m(X) = (X +1)(X2− cX +1) with

X2 − cX + 1 irreducible. (The quadratic factor must be irreducible by the ”unipotent” argument

above.) In this case, −1 and c− 2 must both be in
∗

F 2. This case arises.

4) Suppose deg m(X) = 4. In this case, either

a) m(X) = (X2 − cX + 1)(X2 − dX + 1) with both factors irreducible, or

b) m(X) = X4 − cX3 − dX2 − cX + 1 is irreducible.

I know that (a) arises. Most probably, (b) does too.

The ”Long” Criterion: Let σ ∈ Ω4(V ). Then σ is long if and only if

Q(σx− x) = −ε2
xQ(x) for all x ∈ V and some − εx ∈

∗
F .

The Long Criterion immediately provides the conclusion in (1). It turns out that case (2) is precisely

the situation where all ε2
x are equal, namely to c−2. What about (3) and (4a)? These situations are

similar. In each case, the factorization m(X) = p1(X)p2(X) provides two unique planes, namely

U = p1(σ)V and W = p2(σ)V on which σ acts. Check that V = U ⊥ W. In order for σ to be long,

the Long Criterion that has to hold for both U and W it must be extendable to all of V .

Let’s consider case (3). Note that σ
W

= −1W . By the Long Criterion applied to U and W we get

c − 2 and −1 both in
∗

F 2. So put c − 2 = s2 and −1 = i2. Notice that
∗

Q(U) ∩
∗

Q(W ) is empty,

otherwise V would contain a plane of discriminant
∗

F 2 = −
∗

F 2; not possible because V is anisotropic.

Put

s = −2it−1 for some t ∈
∗
F and set B =

Q(
.

U)

Q(
.

W )
,

where
.

U and
.

W denote the non-zero elements of U and W . The extendability of the Long Criterion

to V translates into the question of the existence - and precise description - of the elements t ∈
∗
F

such that

(∗) 1 +
t2 − 1

1 + β
∈

∗
F 2 for all β ∈ B .
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Do such t exist? YES! To see this rewrite the above as

1 + β − β + t2β

1 + β
= 1 +

t2 − 1

1 + β−1
.

Now observe that {|1 + β| | β ∈
∗

Q(W )} is bounded below by |4|. For suppose that |1 + β| ≤ |4π|

for some β. Then 1 + β = 4απ for some local integer α; but this means that −β = 1 − 4απ ∈
∗

F 2

by the Local Square Theorem. Because −β ∈
∗

Q(W ) (notice that −1 ∈
˙

Q(U)

), wehaveacontradiction.Nowchoosetsuchthat—t2− 1| is small enough and apply the Local Square

Theorem again to get (*).

i2 =Then
∗

Q(U) is a subgroup of index 2 of
∗
F . If Global Fields?
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