
Solutions to 211 Midterm 1998

1.
long Fib(short n)
{

short i, j, k;
if(n==0 || n==1) return 1;
i= j=1; k=−1; /* k=−1 for safety : returns -1 if n≤ −1*/
while(n >1) {

k=i+j;
j=i;i=k; n--;
}

return k;
}

2.
The issue here is precision: floats are fixed precision decimals.
In binary (as in decimal) 1/3 is an infinite decimal, so truncating it
produces errors. Let’s do the example in decimal: 1.0/3.0 is a fixed
length decimal, say .333 to have an explicit example. The second
time through the loop index=.666, the third time index=.999,
the fourth time index=1.332 and so on. Hence index is never 1.0
precisely and the loop never terminates.

3.
(A) and (B) compile and (C) does not. There is not much to say about
why (A) and (B) compile, just that they are both legal C code. (Indeed
they are functionally the same.) Program (C) fails to compile because
you can not do a declaration that asks for an amount of space that
the compiler can not determine. If for some reason you want to do
the sort of thing that (C) does you need malloc!

4.
After line 1;
i=1; j=3; k=2;
after the statement i++; i=2; j=3; k=2;
after the statement j+=k; i=2; j=5; k=2;
after the statement k=i*j; i=2 ; j=5; k=10;
after the statement k11; i=2; j=5; k=9;
so the value of k after the indicated statements is 9.

5.
The function returns the short n so let’s follow the value of n
as we do the function. At the start, x=1.3; y=2.4; and n=6;

1

after the first line of code, tmp has some decimal value which
we do not compute (at least yet). The next line takes n and adds
n to it, so the new value of n is 12. Then we return 12 without ever
using tmp. Hence at the end x has the value 12.0 (a float with value
12).

6.
i=0; y=1.2;
while(i < 33) {

Some Code

i+=2; x=x*x+1;
}

2

