Math 211 Final
May 8, 1998
Professor L. Taylor

Problem 1. A program with the standard main declaration

```
main(int argc, char *argv[]) {
    \vdots
    }
```

was compiled to produce a.out. The program was run with command line

```
a.out -kim 1 5.0 aardvark
```

What was in argv [3]? More explicitly, suppose the boxes below represent a collection of consecutive bytes of memory in the computer and that argv [3] points to the box with the arrow above it. Fill in the remaining boxes. Put a question mark (?) in any box whose contents are unknown given the data. Put your final answer in the top row of boxes, but you may use the lower row to experiment before committing yourself.

Problem 2. Suppose you are working in a programming language which has an "if" statement with the following syntax:
if [test, false-expression, true-expression]
where test is an expression which evaluates true or false. If test is true we do the true-expression, otherwise we do the false-expression. Suppose we have the following problem. We have two tests, test1 and test2 and three expressions, exp1, exp2 and exp3. How would we write an "else if" expression in this language? Explicitly, write an expression which will do $\exp 1$ if test1 is true and will do $\exp 2$ if test1 is false but test2 is true and will do exp3 if both tests are false.

Problem 3. Here is a very short program.

```
    main()
    {
```

```
short i;
i=12;
printf("%d\n",&i);
}
```

I compiled it and ran the a.out and got the answer
-268437934
What's going on? Address two points in your answer. Why didn't I get 12 and what is -268437934?

Problem 4. C has several pitfalls, among them being that unspecified details are left to the people writing the compiler and many people feel that C does not specify enough. An example of "compiler dependence" is that the order of evaluation of the arguments of a function are unspecified: the compiler may do them in any order it chooses. This leads to mistakes when trying to be clever. As an example, suppose

```
short ff(short, short);
```

is a declaration and suppose ix and iy are shorts. Suppose ix has the value 5 when the line.
$i y=f f(i x++, i x) ;$
is encountered. After this line ix is 6 , but iy will be $f f(5,5)$ if the second expression is evaluated first or else $f f(5,6)$ if the first expression is evaluated first. This leads to programs which work correctly when compiled with one compiler but work wrong when compiled with another. Discuss the various possibilities for
$i y=f f(i x++,--i x) ;$
assuming that ix has the value 7 .
(a) If the first expression is evaluated first,
(b) If the second expression is evaluated first,

Problem 5. Recall Pascal's triangle for evaluating binomial coefficients. It $\binom{n}{k}$ is defined to make the binomial theorem work,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

for positive integers n. Inductively, $\binom{n}{0}=\binom{n}{n}=1 ;\binom{n}{1}=\binom{n}{n-1}=n$ and $\binom{n}{k}=\binom{n-1}{k}+$ $\binom{n-1}{k-1}$ for $1<k<n-1$. Given the declaration
long comb(short n, short k);
write code for comb so that $\operatorname{comb}(\mathrm{n}, \mathrm{k})$ recursively calculates $\binom{n}{k}$.

```
long comb(short n, short k) {/* Your code here */
```

Answer 1.

argv[3] points to the C-string 5.0, so the box to which the arrow points contains the character 5 . Then comes the character period (.) and then the character 0. Finally, since we are looking at a C-string, the parade concludes with a 0 (the value 0 NOT the character 0). The boxes before and after this string can have anything in them. It is true that many variants of the UNIX operating system place these strings one after the other, but this is certainly not guaranteed.

Answer 2.

if [test1, if[test2, exp3, exp2], exp1]

The spreadsheet Excel has an if statement with a syntax much like this.

Answer 3.

The problem here is with the syntax of my printf statement. To get 12 I need to write
printf("\% $\mathrm{d} \backslash \mathrm{n} ", i)$;
NOT
printf("\%d\n",\&i);
The number -268437934 is the decimal address of the box where the short i is stored in the machine at the time I ran the program.

Answer 4.

This is very similar to a problem on the midterm.
For part (a), $i y=f f(7,7)$; and $i x=7$;.
For part (b), iy=ff(6,6); and $i x=7$;

Answer 5.

Will recursion never end!

```
long comb(short n, short k) {
if(k<0 || n<k) return 0; /* safety check to avoid infinite loops */
if( k==0 || k==n ) return 1;
if( k==1 || k==n-1 ) return n;
return comb(n-1,k)+comb(n-1,k-1);
}
```

