Math 211 Midterm

March 2, 1998

On my honor, I have abided by the code of honor and have committed no act of academic dishonesty on this examination.

Name:

\qquad

Problem 1.(10pts.) The Fibonacci numbers are defined by the formulae $F_{0}=1, F_{1}=1$, and $F_{n+1}=F_{n}+F_{n-1}$. Write a function to compute the nth Fibonacci number. Specifically, write a function with declaration long Fib (short n) ; which takes the number n as input and returns F_{n}.

Problem 2.(10pts.) The statements below represent part of a long program. The for loop was intended to execute three times (with index $1 / 3,2 / 3$ and 1) and then move on. In fact, it is an infinite loop. Why?

Problem 3.(10pts) Below is code for three versions of a function. Which of them compile and which do not. Why? (Remark: The function doesn't actually do anything interesting.)
A. float AA(short n);
float AA (short n) \{
float v [20];
$\mathrm{n}=\mathrm{n}+1$;
return (v[n]);
\}
C. float AA(short n);
float AA(short n) \{
float $v[n+2]$;
$\mathrm{n}=\mathrm{n}+1$;
return (v[n]);
\}

Problem 4.(10pts.) After the following declarations and code, what is the value of k ?

```
short i, j k;
i=1; j=3; k=2;
i++; j+=k;
k=i*j; k--;
```

Problem 5.(10pts) What value is in x after the statement $x=\operatorname{ARD}(1.3,2.4,6)$; is executed, where ARD is defined as follows:

```
short ARD(float x, float y, short n);
short ARD(float x, float y, short n)
    float tmp;
    tmp=x+y; tmp+=x/y;
    n+=n;
    return (n);
}
```

\{

Problem 6.(10pts) Write the for-loop below as a while-loop. Assume x, y and i have been declared and assume that they all are used in the "Some Code" part of the loop. for ($i=0, y=1.2 ; i<33 ; i+=2, x=x * x+1)$ \{

Some Code

\}

