1. Thisisagood example of recursion. If you could compute the early Fibonnaci numbers, then
you could compute thelater ones aswell. We have, roughly,

l ong Fib(short n){
return(Fib(n-1)+Fib(n-2));

}
The only reason this fails isthat we never exit, so we need to provide an aternate branch to
exit. A wrinklehereisthat we have to compute both Fi b(n-1) and Fi b(n- 2) so we needtwo

stops:

| ong Fi b(short n){

i f(n>=2) {return(Fib(n-1)+Fi b(n-2)); }
else if(n==1) {return 1; }

el se {return 1; }

}

A few remarks. Thelast el se isnotrequired becauseof ther et ur n’sbut it isalwaysagood
idea to write code which mimicsyour logic. Equally, one could replace the lastel se withel se
i f (n==0) but this would not be as robust. If you make the change and then someavhere write
Fi b(-2); it'sback to aninfinite loop. The version presented returns 1. In a production version
of Fi b you would want to handle such problems more gracefully, either by defining Fibonacci
numbers with negative subscripts and returning that value or by checking for input which is out of
range and returning some sort of indicator.

2. First of al, the values of i ndex indicated in the problem are wrong - they were meant to be
0,5, 2. This does not really effect the point of the question which deals with the finite accuracy
of computers. You can seethe problem just using decimal notation. The first value of i ndex is
0:0, but the second is some finite decimal approximation to % say 0:3333. Thenthe third value of
i ndex is0:6666. So far nothing bad has happened, but ook what happens next: i ndex becomes
0:9999 and we check if thisis 1:0. It isnot so we loop again and it is clear that we always get
i ndex! =1. 0. Thefact that the computer isusing some finite binary approximationto % does not
affect the point of the discussion.

Tofix thelooprequires somecare: changingthetesttoi ndex<=1. 0 will kill theinfiniteloop
but wewill do one more pass through the loop than we wanted to do. Somethinglikei ndex>0. 9
doesthe trick (any number greater than the value after two iterations but |ess than the value after
three iterations can be used for the 0. 9).

3. A. and B. are two ways of writingthe same thing and both compile just fine. C. isanillegal
declaration because when the program is compiled the compiler does not know how much space
to set aside for the v array. Remember that declarations tell the compiler how much space to set
aside for each declared variable.

4. Thisis an arithmetic exercise: after line two,

i1=1; j=3; k=2;

After the first command on |ine three,
1=2;]=3; k=2;

After the second comrmand,

i1=2;]=5; k=2;

After the first command on |ine three,
i =2; j=5; k=10;

Finally, we have

i =2; j=5; k=9;

5. One canjust grind through the steps in the code, but a bit of forethought makes life easier (asit
so often does). Thex box containsthevaluethefunction ARD(1. 3, 2. 4, 6) returns, solet’sstart
by looking for ther et ur n statementsin the code. Lifeiseasy sincethere isonly one, r et urn
(n); . Hencewe need only figure out what the value of n is - x and y areirrelevant. When the
function startsup, n=6. After the declaration and the first line of code, the value of n istill 6.
After the second line of code, n is6+6 or 12 and thisis the value returned. Hence x=12. In
particular, all the thrashing around with x, y andt enp are irrelevant.

6. 6. uses afeature of C we havenot yet discussed: we may make one statement out of several
potential statements by tying them together with commasrather than semi-colons. For example, the
initialization part of the f or loop hastwo pieces: i getssetto0 andy get setto1. 2. Similarly,
theiteration step has two pieces. Thef or loop hasaninitialization, abody, an iteration and atest;
the whi | e loop only has a test, so we have to do the other parts explicitly. Here isone possible
solution
i=0; y=1.2; /* initialization */
whil e(i<33){/* test */
Some Code
I +=2; Xx=x*x+1; /* iteration */

}

