
1. This is a good example of recursion. If you could compute the early Fibonnaci numbers, then
you could compute the later ones as well. We have, roughly,

long Fib(short n){
return( Fib(n-1)+Fib(n-2));
}

The only reason this fails is that we never exit, so we need to provide an alternate branch to
exit. A wrinkle here is that we have to compute both Fib(n-1) and Fib(n-2) so we need two
stops:

long Fib(short n){
if(n>=2) {return( Fib(n-1)+Fib(n-2)); }
else if(n==1) {return 1; }
else {return 1; }
}

A few remarks. The last else is not required because of the return’s but it is always a good
idea to write code which mimics your logic. Equally, one could replace the last else with else
if(n==0) but this would not be as robust. If you make the change and then somewhere write
Fib(-2); it’s back to an infinite loop. The version presented returns 1. In a production version
of Fib you would want to handle such problems more gracefully, either by defining Fibonacci
numbers with negative subscripts and returning that value or by checking for input which is out of
range and returning some sort of indicator.

2. First of all, the values of index indicated in the problem are wrong - they were meant to be
0,1

3 , 2
3 . This does not really effect the point of the question which deals with the finite accuracy

of computers. You can see the problem just using decimal notation. The first value of index is
0:0, but the second is some finite decimal approximation to 1

3 , say 0:3333. Then the third value of
index is 0:6666. So far nothing bad has happened, but look what happens next: index becomes
0:9999 and we check if this is 1:0. It is not so we loop again and it is clear that we always get
index!=1.0. The fact that the computer is using some finite binary approximation to 1

3 does not
affect the point of the discussion.

To fix the loop requires some care: changing the test toindex<=1.0will kill the infinite loop
but we will do one more pass through the loop than we wanted to do. Something likeindex>0.9
does the trick (any number greater than the value after two iterations but less than the value after
three iterations can be used for the 0.9).

3. A. and B. are two ways of writing the same thing and both compile just fine. C. is an illegal
declaration because when the program is compiled the compiler does not know how much space
to set aside for the v array. Remember that declarations tell the compiler how much space to set
aside for each declared variable.
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4. This is an arithmetic exercise: after line two,
i=1; j=3; k=2;
After the first command on line three,
i=2; j=3; k=2;
After the second command,
i=2; j=5; k=2;
After the first command on line three,
i=2; j=5; k=10;
Finally, we have
i=2; j=5; k=9;

5. One can just grind through the steps in the code, but a bit of forethought makes life easier (as it
so often does). The x box contains the value the functionARD(1.3,2.4,6) returns, so let’s start
by looking for the return statements in the code. Life is easy since there is only one, return
(n);. Hence we need only figure out what the value of n is - x and y are irrelevant. When the
function starts up, n=6. After the declaration and the first line of code, the value of n is still 6.
After the second line of code, n is 6+6 or 12 and this is the value returned. Hence x=12. In
particular, all the thrashing around with x, y and temp are irrelevant.

6. 6. uses a feature of C we have not yet discussed: we may make one statement out of several
potential statements by tying them together with commas rather than semi-colons. For example, the
initialization part of the for loop has two pieces: i gets set to 0 and y get set to 1.2. Similarly,
the iteration step has two pieces. The for loop has an initialization, a body, an iteration and a test;
the while loop only has a test, so we have to do the other parts explicitly. Here is one possible
solution

i=0; y=1.2; /* initialization */
while(i<33){/* test */

Some Code
i+=2; x=x*x+1; /* iteration */
}
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