Math 211 Midterm

March 23, 2001
Professor L. Taylor

Name:

1. Suppose we have some function whose code begins with the following declarations and initializations.
int $i x=1, i y=2$;
int *ip=\&ix;
2. If the next line reads
*ip=iy;
what values do both ix and iy have?
$i x=2$
iy $=2$
3. If instead of 1 . the next line reads
iy=*ip;
what values do both ix and iy have?
ix = 1
iy = 1
4. If instead of 1 . or 2 . the next line reads
iy=(*ip) ++;
what values do both ix and iy have?
$i x=2$
$i y=1$
5. If instead of $1 ., 2$. or 3 . the next line reads iy=++(*ip);
what values do both ix and iy have?
$i x=2$
iy $=2$
6. A standard C idiom for reading standard input is while((c=getchar())!=EOF) \{

Some Code

Rewrite this as a for loop.

```
for( c=getchar(); c!=EOF; c=getchar()) {
```


Some Code

\}
3. After the following declarations and code, what are the values of each of the variables? Be careful!

```
float a, b;
short i, j;
i=2; j=3;j+=i;
a*=j;
b=i; b-=j;
b+=0.03;
```

At the end of the first line after the declarations, $i=2$ and $j=5$;
The second line after the declarations results in an undefined value being in a. It is 5 times the value that had been in a, but since that was undefined, so is the new value.
The second third after the declarations puts a 2.0 in b and then subtracts 5 from it, so the value then is $b=-3.0$;

The last line adds 0.03 to b and then buts the answer back in b so $\mathrm{b}=-2.97$;
4. Write a function Fact which returns a long integer; takes a long integer as a variable and recursively computes the factorial function. You may assume that the function has been declared elsewhere. So Fact (4) should return the number 24 which is 4 ! and Fact (5) should return the number 120, etc. Remember that $0!=1$.

The factorial of a negative number is undefined but we must return something even when we have a negative number input, so let your function return the negative number that was entered and print NO error message of any kind.

```
long Fact(long LL) {
if(LL<0) {return(LL); }
else if(LL==0) {return(1); }
else {return(LL*Fact(LL-1)); }
}
```

