Mathematics 214: Introduction to Statistics
 Spring Semester 1998
 Exam 2
 March 4, 1998

This Examination contains 16 questions 6 points worth each. You start with 4 points, and the highest possible score is 100 . Fill in your answers on this cover sheet by placing an X through one letter for each problem except problems 7 and 8 . Write the answers for 7 and 8 in the corresponding empty boxes of the list below. Calculators, books, and notes are not allowed.

$\begin{aligned} & \text { hline } \\ & 9 \end{aligned}$	a	b	c	d	e
10	a	b	c	d	e
11	a	b	c	d	e
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	e
15	a	b	c	d	e
16	a	b	c	d	e

Total

Sign the pledge:

"On my honor, I have neither given nor received unauthorized aid on this Exam."

Signature:

\qquad

GOOD LUCK

1. Let X be a discrete random variable with $V(X)=4$, i. e. variance equal to 4 . What is the variance of $6 X+10$?
a) 144
b) 24
c) 34
d) 154
e) 400
2. 10% of the nails produced by a certain machine have defects. If 20 nails are randomly selected one at a time for inspection, as the machine produces them, find the variance of the number of inspected nails that have defects.
a) 2
b) 1.8
c) $\sqrt{1.8}$
d) $(1.8)^{2}$
e) 18
3. Let Y denote a random variable having a geometric distribution, with probability of success on any trial given by $p=0.3$. Find $P(Y=4)$.
a) $(0.7)^{3}(0.3)$
b) $1-(0.3)^{3}(0.7)$
c) $1-(0.7)^{3}(0.3)$
d) $1-\binom{3}{1}(0.3)(0.7)^{3}$
e) $1-0.3-(0.7)(0.3)-(0.7)^{2}(0.3)$
4. Sixty percent of a population of consumers is reputed to prefer Brand A toothpaste. If a group of consumers is interviewed, what is the probability that exactly 5 people must be interviewed before a consumer is encountered who prefers Brand A?
a) $4(0.4)^{4}(0.6)$
b) $\binom{4}{1}(0.4)^{4}(0.6)$
c) $\quad 5(0.4)^{4}(0.6)$
d) $(0.6)^{4}(0.4)$
e) $(0.4)^{4}(0.6)$
5. 5% of the lightbulbs manufactured on a certain assembly line are defective. If bulbs are randomly selected one at a time and tested, find the probability that the third nondefective lightbulb is found on the fifth trial.
a) $\binom{5}{3}(0.05)^{2}(0.95)^{3}$
b) $\binom{4}{2}(0.05)^{2}(0.95)^{3}$
c) $(0.05)^{3}(0.95)^{2}$
d) $\binom{4}{2}(0.05)^{3}(0.95)^{2}$
e) $(0.05)^{2}(0.95)^{3}$
6. A certain manufacturer advertises batteries that will run for an average of 150 minutes, with a standard deviation of 10 minutes. Find the smallest interval, which contains at least 75% of the performance periods for batteries of this type? periods for batteries
a) $50 \leq Y \leq 250$
b) $140 \leq Y \leq 160$
c) $110 \leq Y \leq 190$
d) $130 \leq Y \leq 170$
e) $145 \leq Y \leq 155$
7. Consider a binomial experiment for $n=20$ and $p=0.05$. Use the appended table to find $P(Y \geq 3)$. Write your answer on the cover sheet!
8. Let Y be a discrete random variable having a Poisson distribution with mean $\lambda=1$. Use the appended table to find $P(3 \leq Y \leq 5)$. Write your answer on the cover sheet!
9. The number of telephone calls coming into a central switchboard of an office building has a Poisson distribution and averages 7 per minute. Find the probability that at least one call will arrive within a given two minute period.
a) $1-e^{-1}$
b) $1-e^{-14}$
c) $e^{-14}+14 e^{-14}$
d) $2\left(1-e^{-7}\right)$
e) $\left(1-e^{-7}\right)^{2}$
10. The proportion of time X that a certain computer system is in operation during a week is a random variable with probability density function

$$
f(x)= \begin{cases}4 x^{3} & 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find $E(X)$.
a) 4
b) 1
c) $\frac{4}{5}$
d) $\frac{2}{3}$
e) 0
11. For the computer in the last problem, find the probability that the computer is in operation at most half of the week, i. e., $P(X \leq 0.5)$.
a) $\frac{15}{16}$
b) $\frac{1}{40}$
c) $\frac{1}{4}$
d) $\frac{3}{64}$
e) $\frac{1}{16}$
12. Let X be a random variable with the uniform distribution

$$
f(x)= \begin{cases}\frac{1}{3} & 0 \leq x \leq 3 \\ 0 & \text { elsewhere }\end{cases}
$$

as its probability density function. Find $V(X)$.
a) $\frac{3}{4}$
b) $\frac{1}{4}$
c) $\frac{3}{2}$
d) $\frac{9}{2}$
e) 9
13. Telephone calls coming into a certain switchboard follow a Poisson distribution. It is known that during a given 5 -minute period, one call arrived at the switchboard. Find the probability that the call arrived within the first minute of this period.
a) $\frac{4}{5}$
b) $5 e^{-5}$
c) $\frac{1}{5} e^{-5}$
d) $\frac{1}{4}$
e) $\frac{1}{5}$
14. Assume that the number of fatal accidents on scheduled domestic passenger airlines follows a Poisson distribution with a mean of one fatal accident every 41 days. Then the probability distribution for the interaccident times (time between fatal accidents) on scheduled domestic passenger flights is $\mathrm{a}(\mathrm{n})$:
a) Poisson distribution
b) binomial distribution
c) exponential distribution
d) normal distribution
e) uniform distribution
15. An engineer has observed that the gap times between vehicles passing a certain point on a highway have an exponential distribution with a mean of 10 seconds. Find the probability that the next gap observed will be no longer than 1 minute.
a) e^{-6}
b) $1-e^{-6}$
c) $1-\frac{1}{10} e^{-6}$
d) $1-e^{-60}$
e) $1-e^{-1}$
16. Let the random variable Y possess a probability density function

$$
f(y)= \begin{cases}c y & 0 \leq y \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

Find c.
a) $\frac{1}{4}$
b) 2
c) $\frac{1}{2}$
d) 4
e) 1

