Mathematics 214: Introduction to Statistics
 Spring Semester 1998
 Exam 3
 April 17, 1998

This Examination contains 16 questions 6 points worth each. You start with 4 points, and the highest possible score is 100 . Fill in your answers on this cover sheet by placing an X through one letter for each problem except the first two problems. Write the answers for 1 and 2 in the corresponding empty boxes of the list below. Books and notes are not allowed.

$\begin{aligned} & \text { hline } \\ & 9 \end{aligned}$	a	b	c	d	e
10	a	b	c	d	e
11	a	b	c	d	e
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	e
15	a	b	c	d	e
16	a	b	c	d	e

Total

Sign the pledge:

"On my honor, I have neither given nor received unauthorized aid on this Exam."
Signature:

GOOD LUCK

1. Find $P(Z \leq 2)$ where Z is a standard normal random variable. Write your answer on the cover sheet!
2. Assume X is a normal random variable with mean 3 and standard deviation 2. Find $P(-1 \leq X \leq 5)$. Write your answer on the cover sheet!
3. A fair die is tossed 600 times. What is the approximate probability that at most 90 times a "six" comes up?
a) $\frac{9}{60}$
b) 0.3508
c) 0.1492
d) $\frac{9}{10}$
e) 0.8508
4. The grade-point averages of a large population of college students are approximately normally distributed with mean equal to 2.4 and standard deviation equal to 0.5 . Suppose that three students are randomly selected from the student body. What is the probability that all three will possess a grade-point average in excess of 3.0?
a) $(0.3849)^{3}$
b) $(0.1151)^{3}$
c) $(0.8849)^{3}$
d) $1-(0.1151)^{3}$
e) $1-(0.8849)^{3}$
5. The fracture strengths of a certain type of glass average 14 (in thousands of pounds per square inch) and have a standard deviation of 2 . What is the probability that the average fracture strength for 100 pieces of this glass exceeds 14.5 ?
a) 0.0202
b) 0.4938
c) 0.9938
d) 0.0062
e) 0.4013

The following table is to be used for the questions 6) - 9).

		X_{1}			
		0	1	2	
X_{2}	-1	0.2	0.15	0.1	
	0	0.1	0.05	0.05	
	1	0.2	0.1	0	
	2	0.05	0	0	

6. Find $P\left(X_{1}=2\right)$.
a) 0.05
b) 0
c) 0.15
d) 0.1
e) 0.3
7. Find $E\left(X_{2}\right)$.
a) 1
b) -0.05
c) 0.6
d) -0.1
e) .15
8. Find $E\left(X_{1} X_{2}\right)$.
a) 0
b) 1
c) -0.25
d) -0.15
e) 0.6
9. Find $P\left(X_{1}=2 \mid X_{2}=0\right)$.
a) 0.03
b) 0.05
c) $\frac{1}{3}$
d) $\frac{1}{11}$
e) $\frac{1}{4}$
10. Let X and Y be random variables with variances $V(X)=1$ and $V(Y)=9$ respectively. Assume $\operatorname{Cov}(X, Y)$, the covariance of X and Y, is 2 . Then the variance of $2 X-Y$ is
a) 3
b) -9
c) -5
d) 21
e) 5
11. Let X and Y be random variables with variances $V(X)=1$ and $V(Y)=9$ respectively. Assume $\operatorname{Cov}(X, Y)$, the covariance of X and Y, is 2 . Then the correlation coefficient ρ between X and Y is
a) $\frac{2}{3}$
b) $\frac{4}{3}$
c) $\frac{2}{9}$
d) $\frac{4}{9}$
e) $\frac{2}{\sqrt{3}}$
12. The times to failure of four turbine blades in jet engines, in 10^{3} hours, were as follows:

$$
3.2,1.8,2.6,4.4
$$

The sample mean of these data is
a) $\frac{3}{4}$
b) 3
c) 12
d) 4
e) $\frac{11}{4}$
13. The times in minutes between eruptions for three of the eruptions of the geyser Old Faithful on August 1,1985 were $77,80,80$. The sample mean of these data is 79 . Find the sample variance.
a) 3
b) 2
c) 6
d) 6244
e) 3123.5
14. The diameter measurements of an electric cable, taken at 100 points along the cable, yield a sample mean of 2.1 centimeters and a sample standard deviation of 0.3 centimeter. Construct a 90% confidence interval for the average diameter of the cable.
a) $0.3 \pm 1.645 \frac{2.1}{10}$
b) $2.1 \pm 1.96 \frac{0.09}{10}$
c) $\quad 2.1 \pm 1.645 \frac{0.3}{100}$
d) $2.1 \pm 1.645 \frac{0.3}{10}$
e) $\quad 2.1 \pm 1.96 \frac{0.3}{10}$
15. Suppose that a random sample of only 15 black cherry trees has been taken to estimate the average volume of a black cherry tree in the Allegheny National Forest. Assume that the sample mean for the volumes (in cubic feet) of the 15 trees is $\bar{x}=30.2$ and the sample variance is $s^{2}=268.96\left(=16.4^{2}\right)$. If we assume further that the distribution of the volumes of all the black cherry trees is normal, then a confidence interval for the average volume of a tree in this forest with confidence coefficient 0.98 is:
a) $\quad 30.2 \pm 1.345 \frac{16.4}{\sqrt{15}}$
b) $30.2 \pm 2.33 \frac{16.4}{\sqrt{15}}$
c) $\quad 30.2 \pm 29.1413 \frac{16.4}{\sqrt{15}}$
d) $30.2 \pm 2.624 \frac{16.4}{\sqrt{14}}$
e) $30.2 \pm 2.624 \frac{16.4}{\sqrt{15}}$
16. Suppose $n=13$ observations are taken on normally distributed measurements. The sample variance is $s^{2}=5$. A confidence interval for the variance σ^{2} with confidence coefficient 0.99 is approximately given by
a) $\left(\frac{60}{21.03}, \frac{60}{5.23}\right)$
b) $\left(\frac{60}{28.3}, \frac{60}{3.07}\right)$
c) $\left(-\frac{60}{28.3}, \frac{60}{28.3}\right)$
d) $\left(\frac{60}{29.82}, \frac{60}{3.57}\right)$
e) $\left(-\frac{60}{3.07}, \frac{60}{28.3}\right)$

