\qquad

Math 214: Introduction to Statistics Spring Semester 1999
Exam 1
February 8, 1999

This Examination consists of 16 multiple choice problems worth 6 points each. You start with 4 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.
This booklet consists of 8 sheets of paper including the front cover and one blank page at the end. Calculators, books, and notes are not allowed.

Answers to Multiple Choice Problems

1.	(a)	(b)	(c)	(d)	(e)	9.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)	10.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)	11.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)	12.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)	(e.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)	(e.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)	(e.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)	(e.	(a)	(b)	(c)	(d)	(e)

I have not violated the Honor Code in this examination.

Signature: \qquad

Score: \qquad

1. How many 4-digit numbers can be formed from the digits $2,4,5,6,8$, and 9 if each digit can be used only once?
(a) 6 !
(b) 6^{4}
(c) P_{4}^{6}
(d) 4 !
(e) 24
2. Assume A and B are events, i. e. subsets of a sample space S. Let P be the probability defined on S. It is known that $P(A)=0.6, P(B)=0.5$, and $P(A \mid B)=0.8$. Calculate $P(A B)$.
(a) 0.03
(b) 0.3
(c) 0.1
(d) 0.5
(e) 0.4
3. How many ways are there to select 3 candidates from 8 equally qualified recent graduates for 3 identical openings in an accounting firm?
(a) P_{3}^{8}
(b) $\binom{8}{3}$
(c) 8^{3}
(d) P_{8}^{3}
(e) 3^{8}
4. Groucho has 6 pairs of socks: blue, yellow, green, red, white, and purple. These 12 socks are all mixed together in a drawer, and 3 are selected randomly. What is the probability that 2 of the 3 selected socks match?
(a) $\frac{3}{12}$
(b) $\frac{6 \cdot 10}{\binom{12}{3}}$
(c) $\frac{3}{\binom{12}{3}}$
(d) $\frac{\binom{12}{2}}{\binom{12}{3}}$
(e) $\frac{6}{P_{3}^{12}}$
5. Maria has in her pocket 3 quarters and 10 nickels. She reaches into her pocket and selects randomly 8 coins. What is the probability that the coins she has pulled out add up to 60 cents?
(a) $\frac{\binom{3}{1} \cdot\binom{10}{7}}{\binom{13}{8}}$
(b) $\frac{\binom{3}{2} \cdot\binom{10}{2}}{\binom{13}{8}}$
(c) $\frac{\binom{3}{2} \cdot\binom{10}{2}}{\binom{13}{4}}$
(d) $\frac{\binom{3}{1} \cdot\binom{10}{7}}{\binom{13}{8}}+\frac{\binom{3}{2} \cdot\binom{10}{2}}{\binom{13}{4}}$
(e) $\frac{3}{13} \cdot \frac{10}{12} \cdot \frac{9}{11} \cdot \frac{8}{10} \cdot \frac{7}{9} \cdot \frac{6}{8} \cdot \frac{5}{7} \cdot \frac{4}{6}$
6. How many ways can 5 (identical) doughnuts be given to 12 persons, if each person is allowed to receive several doughnuts.
(a) P_{5}^{12}
(b) $\frac{12!}{5!}$
(c) 5^{12}
(d) $\binom{12}{5}$
(e) 12^{5}
7. From statistics about family summer vacations with a camper it is known that in a typical summer 25% experience mechanical problems, 30% will receive a ticket for committing a traffic violation, and 60% will have neither of these mishaps. What is the percentage of families experiencing both kinds of trouble?
(a) 10%
(b) 15%
(c) 0%
(d) 5%
(e) 20%
8. Suppose that at a certain college 60% of the students are male. It is known that 25% of the male students smoke, while 30% of the female students smoke. What is the fraction of smoking students at that college?
(a) 55%
(b) 28%
(c) 29%
(d) 27%
(e) 26%
9. A bike-store sells mountain bikes and racing bikes. Based on long-range sales, 70% of purchasing customers buy mountain bikes while 30% buy racing bikes. Of those that buy a mountain bike, 40% also buy a helmet. But 60% of racing bike buyers also purchase a helmet. A randomly selected customer buys a helmet and a bike. What is the probability that it is mountain bike?
(a) 0.46
(b) 0.7
(c) $\frac{0.28}{0.46}$
(d) $\frac{0.28}{0.7}$
(e) 0.28
10. A discrete random variable X has the following probability distribution | X | -2 | 0 | 1 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $p(x)$ | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{1}{4}$ | Find the expected value $E(X)$.

(a) $\frac{13}{8}$
(b) $\frac{3}{4}$
(c) $\frac{29}{8}$
(d) 2
(e) $\frac{5}{8}$
11. A random variable X has expected value $E(X)=5$ and variance $V(X)=2$. What is $V(4 X-3)$?
(a) 8
(b) 29
(c) 32
(d) 5
(e) 80

12. A discrete random variable Y has probability distribution | Y | -1 | 0 | 3 |
| :---: | :---: | :---: | :---: |
| $p(y)$ | $\frac{2}{5}$ | $\frac{1}{5}$ | $\frac{2}{5}$ | . The expected value is $E(Y)=\frac{4}{5}$. Find the standard deviation $\sigma(Y)$.

(a) $\frac{84}{25}$
(b) 4
(c) 2
(d) $\sqrt{\frac{84}{25}}$
(e) $\sqrt{\frac{64}{25}}$
13. The set $\{0,1, \ldots, 9\}$ is used to build 9 -digit social security numbers. Repetition of digits is allowed. Assume that all digits are equally likely when creating the numbers. What is the probability that a randomly selected SSN has all digits equal (like 555555555), but is not the number 000000000 ?
(a) $\frac{9}{10^{9}}$
(b) $\frac{9}{10!}$
(c) $\frac{\binom{10}{9}}{10^{9}}$
(d) $\frac{1}{10^{9}}$
(e) $\frac{9 \cdot\binom{10}{9}}{10^{9}}$
14. A CBS News/New York Times Poll, taken on February 1, 1999, shows that 56% of those questioned disapprove of the way the Senate is handling the impeachment trial against President Clinton. Assume that this poll is representative for the adult US-population. For 4 randomly selected adults in the US, let X denote the number of those disapproving of the Senate's way of handling the impeachment trial. What is $P(X=1)$?
(a) $(0.56)(0.44)^{3}$
(b) $\binom{4}{1}(0.56)^{3}(0.44)$
(c) $\binom{4}{1}(0.56)(0.44)^{3}$
(d) $P_{1}^{4}(0.56)(0.44)^{3}$
(e) $\frac{(0.56)(0.44)^{3}}{4}$
15. Let A and B be two independent events having probabilities $P(A)=0.3$ and $P(B)=0.4$. What is $P(A B)$?
(a) 0
(b) 0.7
(c) 1.2
(d) 0.12
(e) 0.3
16. A local company manufactures telephone wire. The average length of the wire is 52 inches with a standard deviation of 6.5 inches. At least, what percentage of the telephone wire from this company exceeds 39 inches?
(a) 70%
(b) 75%
(c) 80%
(d) 85%
(e) 90%

