Mathematics 214: Introduction to Statistics Review for Exam 3, April 1999

The following table is to be used for the questions 1) - 4).

		X_{1}			
		0	1	2	
X_{2}	-1	0.2	0.15	0.1	
	0	0.1	0.05	0.05	
	1	0.2	0.1	0	
	2	0.05	0	0	

1. Find $P\left(X_{1} \geq 1\right)$.
a) 0.55
b) 0.35
c) 0.45
d) 0.25
e) 0.3
2. Find $E\left(X_{2}\right)$.
a) 1
b) -0.05
c) 0.6
d) -0.1
e) .15
3. Find $E\left(X_{1} X_{2}\right)$.
a) 0
b) 1
c) -0.25
d) -0.15
e) 0.6
4. Find $P\left(X_{1}=2 \mid X_{2}=0\right)$.
a) 0.03
b) 0.05
c) $\frac{1}{3}$
d) $\frac{1}{11}$
e) $\frac{1}{4}$
5. The fracture strengths of a certain type of glass average 14 (in thousands of pounds per square inch) and have a standard deviation of 2 . What is the probability that the average fracture strength for 100 pieces of this glass exceeds 14.5 ?
a) 0.0202
b) 0.4938
c) 0.9938
d) 0.0062
e) 0.4013
6. A fair die is tossed 600 times. What is the approximate probability that at most 90 times a "six" comes up? (You may use a calculator.)
a) $\frac{9}{60}$
b) 0.3508
c) 0.1492
d) $\frac{9}{10}$
e) 0.8508
7. Let X and Y be random variables with variances $V(X)=1$ and $V(Y)=9$ respectively. Assume $\operatorname{Cov}(X, Y)$, the covariance of X and Y, is 2 . Then the correlation coefficient ρ between X and Y is
a) $\frac{2}{3}$
b) $\frac{4}{3}$
c) $\frac{2}{9}$
d) $\frac{4}{9}$
e) $\frac{2}{\sqrt{3}}$
8. Let X and Y be random variables with

$$
E(X)=3, E(Y)=6, V(X)=9, V(Y)=1, E(X Y)=20
$$

Then the covariance $\operatorname{Cov}(X, Y)$ of X and Y is
a) 2
b) -2
c) $\frac{2}{3}$
d) 11
e) $-\frac{2}{3}$
9. The times to failure of four turbine blades in jet engines, in 10^{3} hours, were as follows:

$$
3.2,1.8,2.6,4.4
$$

The sample mean of these data is
a) $\frac{3}{4}$
b) 3
c) 12
d) 4
e) $\frac{11}{4}$
10. The times in minutes between eruptions for three of the eruptions of the geyser Old Faithful on August 1,1985 were $77,80,80$. The sample mean of these data is 79 . Find the sample variance.
a) 3
b) 2
c) 6
d) 6244
e) 3123.5
11. The diameter measurements of an electric cable, taken at 100 points along the cable, yield a sample mean of 2.1 centimeters and a sample standard deviation of 0.3 centimeter. Construct a 90% confidence interval for the average diameter of the cable.
a) $0.3 \pm 1.645 \frac{2.1}{10}$
b) $2.1 \pm 1.96 \frac{0.09}{10}$
c) $2.1 \pm 1.645 \frac{0.3}{100}$
d) $2.1 \pm 1.645 \frac{0.3}{10}$
e) $2.1 \pm 1.96 \frac{0.3}{10}$
12. Suppose that a random sample of only 15 black cherry trees has been taken to estimate the average volume of a black cherry tree in the Allegheny National Forest. Assume that the sample mean for the volumes (in cubic feet) of the 15 trees is $\bar{x}=30.2$ and the sample variance is $s^{2}=268.96\left(=16.4^{2}\right)$. If we assume further that the distribution of the volumes of all the black cherry trees is normal, then a confidence interval for the average volume of a tree in this forest with confidence coefficient 0.98 is:
a) $\quad 30.2 \pm 1.345 \frac{16.4}{\sqrt{15}}$
b) $\quad 30.2 \pm 2.33 \frac{16.4}{\sqrt{15}}$
c) $\quad 30.2 \pm 29.1413 \frac{16.4}{\sqrt{15}}$
d) $30.2 \pm 2.624 \frac{16.4}{\sqrt{14}}$
e) $\quad 30.2 \pm 2.624 \frac{16.4}{\sqrt{15}}$
13. Suppose $n=13$ observations are taken on normally distributed measurements. The sample variance is $s^{2}=5$. A confidence interval for the variance σ^{2} with confidence coefficient 0.99 is approximately given by
a) $\left(\frac{60}{21.03}, \frac{60}{5.23}\right)$
b) $\left(\frac{60}{28.3}, \frac{60}{3.07}\right)$
c) $\left(-\frac{60}{28.3}, \frac{60}{28.3}\right)$
d) $\left(\frac{60}{29.82}, \frac{60}{3.57}\right)$
e) $\left(-\frac{60}{3.07}, \frac{60}{28.3}\right)$
14. Let X, Y be independent random variables with $E(X)=3, E(Y)=4$ and $V(X)=9, V(Y)=25$. Then the covariance $\operatorname{Cov}(X, Y)$ is
a) 3
b) -3
c) 0
d) 27
e) 15
15. For an aptitude test for a certain job history shows scores to be normally distributed with a variance of 225.20 applicants are to take the test. Find the approximate probability that the sample variance of the test scores will be less than 138. (You may use a calculator.)
a) 0.1
b) 0.9
c) 0.975
d) 0.025
e) 0.05
16. One-hour carbon monoxide concentrations in air samples from a large city average 10 ppm , with a standard deviation of 9 ppm . Find the probability that the average concentration in 100 samples selected randomly will exceed 12 ppm .
a) 0.4129
b) 0.0132
c) 0.4868
d) 0.0871
e) 0.2514

1.	(a)	(b)	(c)	(d)	(e)	9.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)	10.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)	11.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)	12.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)	13.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)	(e).	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)	(e)	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)	(e.	(a)	(b)	(c)	(d)	(e)

