Peter Cholak Math 221 Wednesday, September 25 Exam 1 This exam is worth 100 points. You should have 7 problems.
(10 points total) Let $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 1 & 6\end{array}\right]$.
(5 points) Find $\operatorname{det}(A)$. Justify your answer.
(5 points) Does A have an inverse? Why?
(30 points total) It is to your advantage to read all of the parts of this problem before beginning. Let

$$
A=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 1 & 4 & 0 \\
0 & 0 & 3 & 0 \\
2 & 0 & 0 & 2
\end{array}\right]
$$

(10 points) Put the matrix A into reduced row echelon form by using only elementary row operations. Show all your work and explicitly write out the elementary row operations in the order used. (This can be done using 6 elementary row operations.)
(5 points) For each one of the above elementary row operations, find a matrix E_{i} such that the matrix $E_{i} B$ is the matrix that results from doing the i th elementary row operation to the matrix B.
(2 points) A has an inverse. Why?
(3 points) Write A^{-1} as the product of the above elementary matrices.
(3 points) Compute $\operatorname{det}(A)$ and $\operatorname{det}\left(A^{-1}\right)$. (HINT: compute $\operatorname{det}\left(A^{-1}\right)$ first.)
(3 points) Solve the system $A^{-1} \mathbf{x}=\mathbf{b}$, where $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$
(10 points) Suppose that C is a 3×3 matrix. Let E be the appropriate product of elementary matrices so that $E C$ is in reduced row echolon form. In this case, assume that

$$
E=\left[\begin{array}{ccc}
0 & 3 & -2 \\
1 & 0 & 0 \\
0 & 2 & 5
\end{array}\right] \text { and } E C=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Form the new 3 by 4 matrix $A=\left[\begin{array}{ll}C & 1 \\ C & 0\end{array}\right]$, and solve the system of equations $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=0$. Be sure to give all of the solutions.
(15 points total) Consider the matrix $B=\left[\begin{array}{ccc}2 & 0 & 2 \\ -1 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$.
(10 points) Compute the characteristic polynomial $\operatorname{det}(\lambda I-B)$.
(5 points) For what values of λ does the equation $B \mathbf{x}=\lambda \mathbf{x}$ have non-trivial solutions?
(20 points total) Assume that the polynomial function $f(x)$ has the following form: $f(x)=a x^{2}+b x+c$.
(5 points) Write down the system of linear equation that a, b and c, must satisfy in order that the graph of f pass through the points $P=(-1,-1)$, $Q=(1,1)$, and $R=(2,0)$.
(15 points) Find all the functions f of the given form which pass through the points P, Q and R ?

Decide whether each of the following statements is True or False, and give an explanation.
(7 points) (True/False and why) If A is an invertible matrix, and B and C are matrices so that $B A=C A$, then $B=C$.
(8 points)(True/False and why) The sum of two invertible matrices is again an invertible matrix.

