Peter Cholak Math 221 Friday, November 1 Exam 2
This exam is worth 100 points. There are 7 questions on 3 pages (both sides) and one blank page.
(12 points) Let b be a fixed real number. Use Cramer's Rule to find the y coordinate of the solution to the following system of linear equations. No credit will be given for the use of methods other than Cramer's Rule.

$$
\left[\begin{array}{ccc}
-3 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
b
\end{array}\right]
$$

(13 points) Find a basis and the dimension of the solution space to the equation

$$
\left[\begin{array}{lll}
3 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0
$$

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which first reflects a vector about the x-axis, and then rotates the vector counter-clockwise by $\frac{3 \pi}{4}$ radians (135 degrees).
(9 points) Compute $T\left(\vec{e}_{1}\right)$ and $T\left(\vec{e}_{2}\right)$.
(6 points) Determine the standard matrix $[T]$ of the transformation T.
(5 points - no partial credit) Decide which of the following accurately describes the effect of the linear transformation T^{-1} on a vector in \mathbb{R}^{2}.

1. T does not have an inverse.
2. T^{-1} first reflects the vector about the x-axis, and then it rotates the vector counter-clockwise $\frac{3 \pi}{4}$ radians.
3. T^{-1} first reflects the vector about the x-axis, and then it rotates the vector clockwise $\frac{3 \pi}{4}$ radians.
4. T^{-1} first rotates the vector counter-clockwise $\frac{3 \pi}{4}$ radians, and then reflects the vector about the x-axis.
5. T^{-1} first rotates the vector clockwise $\frac{3 \pi}{4}$ radians, and then reflects the vector about the x-axis.

Let $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by the rule $S(x, y, z)=$ $(2 x+y-4 z, x+y, 3 z)$.
(6 points) Is $(0, \pi, 0)$ an eigenvector for S ? If so, what is the corresponding eigenvalue? (10 points) Let $\vec{v}=(2 d, d, 1), d$ a real number. Is there a value d
such that \vec{v} is an eigenvector for S ? If so, what is the corresponding eigenvalue.

In the following, we specify a vector space V and a subset W of V. In each case, determine if W is a subspace of V. Justify your conclusion.
(5 points) $V=\mathrm{Mat}_{2 \times 2}$, the vector space of two by two matrices.
$W=$ all two by two matrices A with the property that $A\left[\begin{array}{c}-3 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
(5 points) $V=\mathbb{R}^{3}$.
$W=$ all vectors $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ so that $\vec{x} \cdot(0,3,-1)=5$.

Consider the subset B of \mathbb{R}^{4} consisting of the following three vectors:

$$
\vec{b}_{1}=(2,0,2,0) \quad \vec{b}_{2}=(0,1,0,1) \quad \vec{b}_{3}=(0,1,0,-1)
$$

(10 points) Is B a basis for $\operatorname{Span}(B)$? Why or why not?
(11 points) Decide if $\vec{v}=(1,-1,-1,2)$ is in $\operatorname{Span}(B)$. If so, write \vec{v} as a linear combination of b_{1}, b_{2}, b_{3}. If not, is $\left\{\vec{u}, \vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right\}$ a basis for \mathbb{R}^{4} ?

Decide whether the following assertion is true or false. Explain your decision. (8 points) Let \vec{v} be a vector in \mathbb{R}^{3}. If \vec{v} is orthogonal to \vec{e}_{2}, then \vec{v} is in $\operatorname{Span}\left(\vec{e}_{1}, \vec{e}_{3}\right)$.

