Peter Cholak Math 221 Wednesday, December 4, 1996 Exam 3 This exam is worth 100 points. There are 5 problems on 6 pages and one blank page. Be sure to show all your work; you will not get full credit unless your work matches your answer!

Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 4 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$
. (5 points) Find a basis for the row space of A . (6

points) Find a basis for the column space of A. (6 points) Find a basis for the nullspace of A. (3 points) Determine the value of $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.

Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 4 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$
 (the same matrix as in the last problem). (Hint: consider the column space of A .) (6 points) Determine whether $A\vec{x} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$ is consistent and if so, find the general solution. (6 points) Determine whether

consistent and if so, find the general solution. (6 points) Determine whether

$$A\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$$
 is consistent and if so, find the general solution.

(8 points) Determine the value(s) of b such that $A\vec{x} = \begin{bmatrix} 0 \\ b \\ 2 \end{bmatrix}$ is consistent and find the general solution for this value(s).

For each of the following, indicate whether the statement is true or false. Include a brief explanation of your answer. (You will not full credit without a reasonable explanation!).

(8 points) Let V be an inner product space, and let $S = \{\vec{v}_1, \vec{v}_2\}$ be an orthogonal set of vectors. Then S is a linearly independent set of vectors.

(6 points) Let A be a 3×7 then the general solution to the system of linear equations $A\vec{x} = \vec{b}$ has at least 4 parameters. (6 points) Let S be a orthonormal

basis for an inner product space V, $(\vec{u})_S = (1, 2, 0)$ and $(\vec{v})_S = (-1, 2, 1)$. Then the distance between \vec{u} and \vec{v} is 4, i.e. $d(\vec{u}, \vec{v}) = 4$.

(20 points) Use the Gram-Schmidt process to find an orthogonal basis for the row space of A, where

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 3 & 0 & 1 \end{bmatrix}$$

Let W denote the span of the following vectors in \mathbb{R}^4 :

(4 points) Verify that $\{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ is an orthogonal basis for W. (9 points)

Let $\vec{x} = (1, 2, 1, 0)$. Compute $\operatorname{Proj}_W(\vec{x})$, the *orthogonal projection* of \vec{x} onto the subspace W. (7 points) Find an orthonormal basis for W^{\perp} . (Hint: first think

about what the dimension of W^{\perp} should be and then think about what you did in the last part.)