Peter Cholak Math 221 Wednesday, December 4, 1996 Exam 3
This exam is worth 100 points. There are 5 problems on 6 pages and one blank page. Be sure to show all your work; you will not get full credit unless your work matches your answer!

$$
\text { Let } A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
1 & 4 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

(5 points) Find a basis for the row space of A. (6 points) Find a basis for the column space of A. (6 points) Find a basis for the nullspace of A. (3 points) Determine the value of $\operatorname{rank}(A)$ and nullity (A).

Let $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 1 & 4 & 1 \\ 1 & 0 & -1\end{array}\right]$ (the same matrix as in the last problem). (Hint: consider the column space of A.) (6 points) Determine whether $A \vec{x}=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$ is consistent and if so, find the general solution. (6 points) Determine whether
$A \vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right]$ is consistent and if so, find the general solution.
(8 points) Determine the value(s) of b such that $A \vec{x}=\left[\begin{array}{l}0 \\ b \\ 2\end{array}\right]$ is consistent and find the general solution for this value(s).

For each of the following, indicate whether the statement is true or false. Include a brief explanation of your answer. (You will not full credit without a reasonable explanation!).
(8 points) Let V be an inner product space, and let $S=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be an orthogonal set of vectors. Then S is a linearly independent set of vectors.
(6 points) Let A be a 3×7 then the general solution to the system of linear equations $A \vec{x}=\vec{b}$ has at least 4 parameters. (6 points) Let S be a orthonormal
basis for an inner product space $V,(\vec{u})_{S}=(1,2,0)$ and $(\vec{v})_{S}=(-1,2,1)$. Then the distance between \vec{u} and \vec{v} is 4 , i.e. $d(\vec{u}, \vec{v})=4$.
(20 points) Use the Gram-Schmidt process to find an orthogonal basis for the row space of A, where

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 \\
1 & 3 & 0 & 1
\end{array}\right]
$$

Let W denote the span of the following vectors in \mathbb{R}^{4} :

$$
\begin{aligned}
& \vec{b}_{1}=\left(\begin{array}{cccc}
\frac{4}{5}, & 0, & \frac{3}{5}, & 0
\end{array}\right) \\
& \vec{b}_{2}=\left(\begin{array}{cccc}
-\frac{3}{5}, & 0, & \frac{4}{5}, & 0
\end{array}\right) \\
& \vec{b}_{2}=\left(\begin{array}{cccc}
0, & 1, & 0, & 1
\end{array}\right)
\end{aligned}
$$

(4 points) Verify that $\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right\}$ is an orthogonal basis for W. (9 points)

Let $\vec{x}=(1,2,1,0)$. Compute $\operatorname{Proj}_{W}(\vec{x})$, the orthogonal projection of \vec{x} onto the subspace W. (7 points) Find an orthonormal basis for W^{\perp}. (Hint: first think
about what the dimension of W^{\perp} should be and then think about what you did in the last part.)

