Peter Cholak Math 221 Wednesday, December 18, 1996. Final This final is worth 150 points. There are 7 problems on 5 pages and one blank page. Be sure to show all your work; you will not get full credit unless your work matches your answer!!

$$
\text { (10 points) Let } A=\left[\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 0 & 1 & 0 \\
0 & -2 & 0 & 0 \\
1 / 2 & 0 & 0 & 0
\end{array}\right]
$$

If b is some real number, use Cramer's rule to find the x_{3} coordinate of the solution to the following equation:

$$
A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
b \\
-1 \\
-3
\end{array}\right]
$$

Let $A=\left[\begin{array}{cccc}1 & 2 & 1 & 1 \\ 2 & 4 & 1 & 0 \\ 3 & 6 & 0 & -3\end{array}\right] . \quad\left(10\right.$ points) Determine whether $A \vec{x}=\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]$ is consistent and if so, find the general solution.
(10 points) Determine whether $A \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 6\end{array}\right]$ is consistent and if so, find the general solution.
(40 points -8 points each) For each of the following, indicate whether the statement is true or false. Include a brief explanation of your answer. You will not receive full credit without a reasonable explanation! The rule $\langle\vec{x}, \vec{y}\rangle=$ $x_{1} y_{1}-x_{2} y_{2}$ defines an inner product on the vector space \mathbb{R}^{2}. (Here $\vec{x}=\left(x_{1}, x_{2}\right)$ and $\vec{y}=\left(y_{1}, y_{2}\right)$.) Let W be all 2×2 matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a+d=1$ and
V be all 2×2 matrices. Then W is a subspace of V. Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & b\end{array}\right]$.

Then for all values of b the linear transformation $T_{A}(\vec{x})=A \vec{x}$ is onto. Let W
be the set of \vec{b} such that $A \vec{x}=\vec{b}$ is consistent, where A is an 4×3 matrix. Then the W is a subspace of \mathbb{R}^{4}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. If

$$
k_{1} \vec{x}_{1}+k_{2} \vec{x}_{2}=\overrightarrow{0} \text { then } k_{1} T\left(\vec{x}_{1}\right)+k_{2} T\left(\vec{x}_{2}\right)=\overrightarrow{0} .
$$

(15 points) Consider the following three vectors in \mathbb{R}^{4} (with the Euclidean inner product): $(1,0,0,1),(0,1,0,-1)$ and $(0,0,1,1)$. Find an orthonormal basis for the space spanned by these three vectors (you will need to use GramSchmidt).

Consider the following system of linear equations:

$$
\begin{aligned}
& 1 x_{1}+4 x_{2}+0 x_{3}=a_{1} \\
& 0 x_{1}+2 x_{2}+1 x_{3}=a_{1} \\
& 0 x_{1}+0 x_{2}+2 x_{3}=a_{1}
\end{aligned}
$$

(5 points) Find the coefficient matrix P of this system of linear equations.
(10 points) Is P invertible? If so, find the inverse matrix P^{-1}. Otherwise, explain why P has no inverse.
(5 points) Find the general solution $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ to this system of linear equations.

Let $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right]$
(15 points) Find the eigenvalues for the matrix A. For each eigenvalue that you find, find a basis for the corresponding eigenspace.
(5 points) Find a matrix P and a diagonal matrix D such that $P^{-1} A P=D$.

Consider the vectors $\vec{v}=\frac{1}{\sqrt{2}}(1,-1,0)$ and $\vec{w}=(0,0,1)$. These vectors form an orthonormal basis for a subspace W in \mathbb{R}^{3} (with the Euclidean inner product). Let $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by orthogonally projecting onto the subspace W; so $P(\vec{x})=\operatorname{Proj}_{W}(\vec{x})$.
(10 points) We know that for a vector $\vec{x}, P(\vec{x})=\operatorname{Proj}_{W}(\vec{x})=(\vec{x} \cdot \vec{w}) \vec{w}+(\vec{x}$. $\vec{v}) \vec{v}$. Compute the standard matrix associated with P. (Hint: compute $P\left(\vec{e}_{1}\right)$, $P\left(\vec{e}_{2}\right)$ and $P\left(\vec{e}_{3}\right)$.)
(For the remaining parts of the problem there is nothing to compute.) (5 points) $\vec{z}=(1,1,0)$ is orthogonal to the subspace W. Is the vector \vec{z} an eigenvector for P ? If so, what is the eigenvalue?
(5 points)Is the vector \vec{v} an eigenvector for P ? If so, what is the eigenvalue. What about \vec{w} ? $\quad 5$ points) Find the eigenvalues of the standard matrix for P.

Find bases for the eigenspaces. (Hint: use the above two parts.)

