Peter Cholak
Math 221
Quiz
Nov. 25, 1996

Work in \mathbb{R}^{4} with the Euclidean inner product. Consider the two vectors $\vec{u}=(1,1,1,0)$ and $\vec{v}=$ $(-1,1,0,1)$; both of whose norm is $\sqrt{3}$. Let W be the space spanned by these two vectors. (Be sure to show all needed work.)
(3 points) Are \vec{u} and \vec{v} orthogonal? (8 points) Find a basis for W^{\perp}.
(3 points) Assume $A=\vec{u}$
\vec{v} and $A \vec{x}_{0}=\vec{b}$. Find the general solution to $A \vec{x}=\vec{b}$ (in terms of \vec{x}_{0}). (Hint: use the answer to the last problem.) (3 points) Use the answer to problem to find a basis for \mathbb{R}^{4} that includes \vec{u} and
\vec{v}. (8 points) Write $\vec{w}=(0,2,4,1)$ as the $\vec{w}_{1}+\vec{w}_{2}$, where \vec{w}_{1} is in W and \vec{w}_{2} is in W^{\perp}. (Hint:

The answer to will be useful here and the fact that the norm of \vec{u} and \vec{v} is $\sqrt{3}$.)

