Peter Cholak Math 221 Quiz Nov. 25, 1996

Work in \mathbb{R}^4 with the Euclidean inner product. Consider the two vectors $\vec{u} = (1, 1, 1, 0)$ and $\vec{v} = (-1, 1, 0, 1)$; both of whose norm is $\sqrt{3}$. Let W be the space spanned by these two vectors. (Be sure to show all needed work.)

(3 points) Are \vec{u} and \vec{v} orthogonal? (8 points) Find a basis for W^{\perp} .

(3 points) Assume $A = \vec{u}$

 \vec{v} and $A\vec{x}_0 = \vec{b}$. Find the general solution to $A\vec{x} = \vec{b}$ (in terms of \vec{x}_0). (Hint: use the answer to the last problem.) (3 points) Use the answer to problem to find a basis for \mathbb{R}^4 that includes \vec{u} and

 \vec{v} . (8 points) Write $\vec{w} = (0, 2, 4, 1)$ as the $\vec{w}_1 + \vec{w}_2$, where \vec{w}_1 is in W and \vec{w}_2 is in W^{\perp} . (Hint:

The answer to $% \vec{v}$ will be useful here and the fact that the norm of \vec{u} and \vec{v} is $\sqrt{3}.)$