Math 221 -- Course Description

Peter Cholak
George McNinch

General Issues

se are some of the 'logistical issues' related to the course.
: Text Book
.ementary Linear Algebra, 7th edition, by Howard Anton, Jhn Wiley \& Sons, Inc.
urrently we think very well of the book and would suggest it's ;e next year. The book is at a reasonable level for our students - not too hard nor too easy. However, more applications might : nice. Finding a better book for this group of students will : difficult. (Added later, the book breaks down slightly in lapter 6.3)

: Old Syllabus

'ector spaces, Matrices, determinants, linear equations, linear :ansformations, Eigenvalues, Inner products, Canonical forms, splications."

Ir book does not cover canonical forms nor many applications. We llieve it would be very difficult to cover canonical forms in is class with this group of students. More applications would : nice.

What we have covered

```
Systems of Linear Equations -- Chapter 1
Matrices --- arithmetic of matrices
Gaussian elimination and related ideas
inverses of matrices
homogeneous linear systems
: Determinants -- Chapter 2
evaluating determinants, basic properties
Cramer's rule; co-factor expansion
Geometry of real n-space -- Chapter 4
```

```
n-tuples, inner products, norms
Linear transformations from n-space to m-space; associated
    standard matrix
Eigenvectors/values (briefly)
```

```
(abstract) real vector spaces -- Chapter 5
    defined
    subspaces
    spanning, linear independence, bases
    row space/column space/null space of a matrix
    rank and nullity of a matrix
    general form of a solution to a system of linear equations
Inner product spaces -- Chapter 6 (skipped 6.4)
defined
orthogonal
orthonormal
    (proof of ) Cauchy Schwartz inequality
Gram-Schmidt and orthonormal bases
    Orthogonal matrices/change of basis
```

Eigenvectors -- Chapter 7
quick review
eigenspaces
diagonalizing matrices (orthogonally and otherwise)

What we wished we have also covered.
Linear transformations -- Chapter 8
definitions
kernel, range, inverses, matrix representations
similarity
isicly we just did not have enough time to cover this. If we ive 3-4 more days we could covered Chapter 8 and skipped Chapter

This would be been better. It would take some work to find ie needed time -- a faster pace through Chapter 1 could add 1-2 lys and better placement of exams and reviews could maybe save a day.

The Students:
irrently there are no prerequisites. Although most students ive had calculus; maybe this should be added as a prerequisite. : would be helpful if they have had seen vectors, dot products, :oss products in 3 -space before this class. The students are
snerally able. This is the first course where many (all?) have , deal with "abstraction" and many find this difficult. While : have not been shying away from this, the course is by no means 1 introduction to "proofs" and "abstraction". Whether this)urse serves as a gentle and good introduction to "proofs" and ibstraction" is unclear.

Use of the computer:
lere is some potential for using more computer problems and plications in the class. This may be an option be to explored 1 later years. However, to do so may move this course away from saling with "abstraction" and "proof".

