Test $\mathbb{N O} .3$ Solutions

1. (20 points) Use Cramer's formulas to solve the following system of equations

$$
\begin{array}{r}
x-y=3 \\
y+z=3 \\
x-y+z=2
\end{array}
$$

Warning: No credit will be given for any other method of solution.

Solution.
$x=\frac{\left|\begin{array}{ccc}3 & -1 & 0 \\ 3 & 1 & 1 \\ 2 & -1 & 1\end{array}\right|}{\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 1\end{array}\right|}=7 y=\frac{\left|\begin{array}{ccc}1 & -1 & 0 \\ 3 & 3 & 2 \\ 1 & -1 & 1\end{array}\right|}{\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 1\end{array}\right|}=4 z=\frac{\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ 3 & 3 & 2\end{array}\right|}{\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 1\end{array}\right|}=-1$.
2. (15 points). A sequence of matrices is defined as follows:

$\underline{\text { Show that } \operatorname{det}} M_{n}=0$ for all $n \geq 3$. Why are the first two different?
Solution.

1. $n \geq 3$. The difference between the third and the second column is a column whose all entrees are 1 , so is the difference between the second column and the first. By the second rule, the determinant equals 0 , because it equals a determinant with two identical columns.
(It will also work with rows: the two identical rows will have all entrees equal n.)

The proof will not be valid for $n=1,2$, because there will be no third row. Indeed, $\operatorname{det}\left(M_{1}\right)=1, \operatorname{det}\left(M_{2}\right)=-2$.
3. (15 points) Use the big formula to evaluate the determinant $\left|\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 0 & 2\end{array}\right|$.

Write out explicitly all nonzero products with the proper sign.

Solution

The only nonzero products are $a_{11} a_{23} a_{32} a_{42}=2$ and $a_{14} a_{23} a_{32} a_{41}=6$. The first permutation is odd, the second is even, so the determinant equals $-2+6=4$.
4. (20 points) $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & -1 & 4 \\ 0 & 0 & 3\end{array}\right]$. What are the eigenvalues of A, A^{2} and A^{3} ??

Solution.
Because A is a triangular matrix the eigenvalues of A are the pivots: $1,-1,3$. The eigenvalues of A^{2} are $1,1,9$, the eigenvalues of A^{3} are $1,-1,27$. If λ is an eigenvalue of A, then λ^{n} is an eigenvalue of A^{n} with the same eigenvector.

Find an eigenvector corresponding to the eigenvalue 3 of A.

Solution.

We need to find a nonzero vector in the nullspace of the matrix $\left[\begin{array}{ccc}-2 & 2 & 2 \\ 0 & -4 & 4 \\ 0 & 0 & 0\end{array}\right]$, e.g.
[any multiple of this vector will do].
Is this an eigenvector of A^{2} ? If so, to which eigenvalue of A^{2} does it belong. Solution.
Answer. Yes, it corresponds to the eigenvalue 9. Proof. Denoting, the eigenvector \mathbf{x}, we have $A \mathbf{x}=3 \mathbf{x}, A^{2} \mathbf{x}=A(3 \mathbf{x})=3 A \mathbf{x}=9 \mathbf{x}$.

Are these matrices diagonalizable? Justify. Yes. The matrix A has three distinct eigenvalues and, therefore, three independent eigenvectors. Consequently it is diagonalizable. The other two have the same eigenvectors. Therefore, they are diagonalizable too. Note that A^{2} has a double eigenvalue 1.
5. (15 points) The characteristic polynomial of the matrix $\left[\begin{array}{ccc}8 & 3 & -3 \\ -6 & -1 & 3 \\ 12 & 6 & -4\end{array}\right] \underline{\text { factors into }}$ $-(\lambda+1)(\lambda-2)^{2}$. Decide if the matrix is diagonalizable?
Solution.
The eigenvalues are $\lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=2$. The eigenvalue -1 will supply one column of the matrix S. The eigenvalue 2 must supply 2 columns. So, the matrix is diagonalizable if there are 2 independent eigenvectors corresponding to the eigenvalue 2 , and is not if there is only one independent eigenvector. The eigenvectors lie in the nullspace of the matrix
$\left[\begin{array}{ccc}6 & 3 & -3 \\ -6 & -3 & 3 \\ 12 & 6 & -6\end{array}\right]$. This matrix is of rank 1 (row $2=-$ row 1 , row $3=2$ row 1) so there are two independent eigenvectors, and the matrix is diagonalizable.
6. (20 points) The matrices $A=\left[\begin{array}{ccc}-1 & 0 & 5 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$ and $B==\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & 2\end{array}\right]$ have the same eigenvalues as the matrix in question 5 . Which of these matrices is diagonalizable?

Solution

Again, the answer depends on number of independent eigenvectors with eigenvalue 2 :
For A we look at the matrix $\left[\begin{array}{ccc}-3 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, which is of rank 1. Diagonalizable.
For B we look at the matrix $\left[\begin{array}{ccc}-3 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 0\end{array}\right]$, which is of rank 2. Not diagonalizable.
7. Extra credit. The eigenvalues of the matrix $A=\left[\begin{array}{cc}23 & -36 \\ -36 & 2\end{array}\right]$ are -25 and 50 . Find the orthogonal matrix, which diagonalizes A..

Solution.

Finding the eigenvectors involves finding generators of the nullspaces of matrices $\left[\begin{array}{cc}48 & -36 \\ -36 & 27\end{array}\right] \mathbf{x}=\mathbf{0}$ gives an eigenvector $(4,3)$ for the eigenvalue -25 .
$\left[\begin{array}{ll}-28 & -36 \\ -36 & -48\end{array}\right] \mathbf{x}=\mathbf{0}$ gives the other eigenvector (3, -4). The eigenvectors are orthogonal.
To get an orthogonal matrix S we must norm the vectors by dividing them by 5 . So
$S=\left[\begin{array}{cc}\frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & \frac{-4}{5}\end{array}\right]$. Remember, This is not the only orthogonal matrix, which will do it.

