\qquad
1.(5 points)

2. (10 points) Find the angle between the two vectors \mathbf{v} and \mathbf{w} above.
\qquad
3. (5 points) The matrices A and B are invertible with inverses A^{-1} and B^{-1}. What is the inverse of the block matrix $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$?
4. (15 points) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 2 & 5\end{array}\right]$. Find the factorization $A=L D U$, where L is a lower triangular matrix with 1-s on the diagonal, D is a diagonal matrix and U is an upper triangular matrix with 1-s on the diagonal.

Change the entry $A(3,3)$ in such a way that such a factorization becomes impossible.

Student's name \qquad
5. (15 points) Represent the elements of the column space of the matrix A $=\left[\begin{array}{ccc}1 & 0 & 2 \\ 1 & -1 & 1 \\ 0 & 1 & 1\end{array}\right]$ as linear combinations of the smalest number of columns.

Use this representation to determine for which of the following vectors, if any, the equation $A \mathbf{x}=\mathbf{b}$ has a solution:
a) $\mathbf{b}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$,
b) $\mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.

Find a c, such that the vector $\left[\begin{array}{l}2 \\ 1 \\ c\end{array}\right]$ belong to the columns space of A above.
6. (10 points) Compute the square of the matrix $\left[\begin{array}{rr}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$. Decide without further computation what is its inverse.
7. (5 points) Which of the following matrices is in reduced echelon form?

$$
A=\left[\begin{array}{ccccc}
1 & 0 & -5 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], B=\left[\begin{array}{lllll}
1 & 0 & 0 & 2 & 5 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right], C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], D=\left[\begin{array}{llll}
1 & 2 & 0 & 3 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

8. (10 points) For one that is find the nullspace.
\qquad
9. (10 points) Define the following:
(a) The transpose of a matrix A
(b) A symmetric matrix
(c) A skew symmetric matrix
10. (15 points) True or false?
(a) For any three unit vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$, if $\mathbf{x} \cdot \mathbf{y}=0$ and $\mathbf{x} \cdot \mathbf{z}=0$, then $\mathbf{y}=\mathbf{z}$ or $\mathbf{y}=-\mathbf{z}$.
(b) $(A B)^{-1}=A^{-1} B^{-1}$.
(c) The number of rows in the echelon form and the reduced echelon for of a matrix are always the same.
(d) Every square matrix is a sum of a symmetric matrix and a skew symmetric matrix.
(e) The inverse of a symmetric matrix is symmetric.
(f) A 3×3 skew symmetric matrix has no inverse.
