1.(20 points) Use Cramer's formulas to solve the following system of equations

$$\begin{array}{l} x - y &= 3\\ y + z &= 3\\ x - y + z &= 2 \end{array}$$

Warning: No credit will be given for any other method of solution.

2. (15 points). A sequence of matrices is defined as follows:

$$\begin{split} M_{1} &= \begin{bmatrix} 1 \end{bmatrix}, M_{2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, M_{3} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \dots, \\ M_{n} &= \\ \begin{bmatrix} 1 & 2 & \dots & n \\ n+1 & n+2 & \dots & 2n \\ 2n+1 & 2n+2 & \dots & 3n \\ \dots & \dots & \dots & \dots & \dots \\ (n-1)n+1 & (n-1)n+2 & \dots & (n-1)n+n \end{bmatrix}, \dots \end{split}$$

Show that det $M_n = 0$ for all $n \ge 3$. Why are the first two different?

3 . (15	5 points) Use the big formula to evaluate the determinant	1 0 0 3	0 0 1 0	0 1 0 0	2 0 0 2
Write	out explicitly all nonzero products with the proper sign.				

3.

4. (20 points)
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & -1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$
. What are the eigenvalues of A, A^2 and A^3 ?

Find an eigenvector corresponding to the eigenvalue 3 of A.

Is this an eigenvector of A^2 ? If so, to which eigenvalue of A^2 does it belong.

Are these matrices diagonalizable? Justify.

5. (15 points) The characteristic polynomial of the matrix $\begin{bmatrix} 8 & 3 & -3 \\ -6 & -1 & 3 \\ 12 & 6 & -4 \end{bmatrix}$ factors into $-(\lambda+1)(\lambda-2)^2$. Decide if the matrix is. diagonalizable?

6. (20 points) The matrices $A = \begin{bmatrix} -1 & 0 & 5 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ and $B = = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{bmatrix}$ have the same eigenvalues as the matrix in question 5. Which of these matrices is diagonalizable?

7. Extra credit. The eigenvalues of the matrix $A = \begin{bmatrix} 23 & -36 \\ -36 & 2 \end{bmatrix}$ are -25 and 50. Find the orthogonal matrix, which diagonalizes *A*.