Math 221 – McNinch November 17, 1997 Additional Problems

1. Consider the matrix
$$A = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{-\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$

- (a). Compute the characteristic polynomial $det(A \lambda I)$. This will be a third degree polynomial in λ .
- **(b).** Compute $A \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Deduce that $\lambda_1 = 1$ is an eigenvalue of A.
- (c). Find all eigenvalues of A. (Try dividing the characteristic polynomial by $(\lambda 1)$. Why would this be useful?)
- (d). Find the eigenvectors corresponding to the eigenvalues you just found.
- (e). If we write the characteristic polynomial as

$$c_0 - c_1 \lambda + c_2 \lambda^2 - \lambda^3,$$

check that $c_0 = \lambda_1 \cdot \lambda_2 \cdot \lambda_3$, where the λ_i are the three eigenvalues you have found. Check that $c_0 = \det(A)$.

(f). Check that $c_2 = \lambda_1 + \lambda_2 + \lambda_3$ and that $c_2 = \text{Tr}(A)$.

(g). In general, c_1 will be given by the formula $\lambda_1 \cdot \lambda_2 + \lambda_2 \cdot \lambda_3 + \lambda_1 \cdot \lambda_3$. Check that this formula gives the correct answer in this case. Show that this is always the correct formula when *B* is a triangular matrix $\begin{bmatrix} \lambda_1 & a & b \\ 0 & \lambda_2 & c \\ 0 & 0 & \lambda_3 \end{bmatrix}$.

(**h**). Can A be diagonalized to a diagonal matrix Λ ? Find Λ .