1. Consider the matrix $A=\left[\begin{array}{ccc}\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{-\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\end{array}\right]$
(a). Compute the characteristic polynomial $\operatorname{det}(A-\lambda I)$. This will be a third degree polynomial in λ.
(b). Compute $A \cdot\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Deduce that $\lambda_{1}=1$ is an eigenvalue of A.
(c). Find all eigenvalues of A. (Try dividing the characteristic polynomial by $(\lambda-1)$. Why would this be useful?)
(d). Find the eigenvectors corresponding to the eigenvalues you just found.
(e). If we write the characteristic polynomial as

$$
c_{0}-c_{1} \lambda+c_{2} \lambda^{2}-\lambda^{3}
$$

check that $c_{0}=\lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3}$, where the λ_{i} are the three eigenvalues you have found. Check that $c_{0}=\operatorname{det}(A)$.
(f). Check that $c_{2}=\lambda_{1}+\lambda_{2}+\lambda_{3}$ and that $c_{2}=\operatorname{Tr}(A)$.
(g). In general, c_{1} will be given by the formula $\lambda_{1} \cdot \lambda_{2}+\lambda_{2} \cdot \lambda_{3}+\lambda_{1} \cdot \lambda_{3}$. Check that this formula gives the correct answer in this case. Show that this is always the correct formula when B is a triangular matrix $\left[\begin{array}{ccc}\lambda_{1} & a & b \\ 0 & \lambda_{2} & c \\ 0 & 0 & \lambda_{3}\end{array}\right]$.
(h). Can A be diagonalized to a diagonal matrix Λ ? Find Λ.

