Name: _______ September 29, 1997

Exam 1

Show your work in completing the following problems. There are 6 pages on the exam. Remember to pace yourself; don't spend too much time on a single problem. Good luck!

Points per problem:

Problem 1.	8 points	Problem 2.	8 points
Problem 3.	5 points	Problem 4.	5 points
Problem 5.	10 points	Problem 6.	24 points
Problem 7.	22 points	Problem 8.	18 points

- 1. Give complete definitions for the following terms. Use complete sentences. [4 pts each]
 - (a). Invertible matrix:
 - **(b).** Column space of a matrix:
- 2. True/False. If false, demonstrate with an example. [4 pts each]
- (a). Let A be a 2×2 matrix. If the equation $A\vec{x} = \vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^2$, then A is invertible.

(b). If the matrices A and B are symmetric, then the *block* matrix $\begin{bmatrix} \vec{0} & A \\ B & \vec{0} \end{bmatrix}$ is symmetric.

3. [5 pts] Consider the following vectors in \mathbb{R}^2 :

Sketch and give the components of the vector difference $\vec{v} - \vec{w}$:

$$\vec{v} - \vec{w} = \begin{bmatrix} - \\ - \end{bmatrix}$$

4. [5 pts] Consider the plane defined by the equation: $\vec{n} \cdot \vec{v} = 3$ where $\vec{n} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$

Find the scalar c so that $c \cdot \begin{bmatrix} 1\\300\\-2 \end{bmatrix}$ lies on the plane.

5. [10 pts] The hyperbola $ax^2 - by^2 = c$ passes through the points

$$(x,y) = (0.5,0)$$
, and

$$(x,y) = (0.707,1)$$

Find a coefficient matrix A and a vector (c_1, c_2) so that the coefficients a, b, c satisfy the equation

$$A \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

Don't solve your system!

6. [12 pts each] Find the inverses of the following matrices.

(a).
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A^{-1} = \boxed{}$$

(b).
$$A = \begin{bmatrix} 1 & -3 & -a \\ 0 & 3 & -6 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

7.

(a). [12 pts] Write $B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 2 \\ 0 & 2 & 3 \end{bmatrix}$ as a product $B = U^T \cdot D \cdot U$, where U is an upper triangular matrices with 1's on its diagonal, and D is a diagonal matrix.

(b). [10 pts] Find a 2×2 matrix A so that $A_{2,2} = 1$, but $E_{2,1}A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$

- 8. Consider the matrix $A = \begin{bmatrix} -1 & -2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (a). [6 pts] (Circle the appropriate choices.)
 - \bullet The column space of A is a subspace of ($\mathbb{R}^2,\,\mathbb{R}^3$).
 - \bullet The column space of A is (the zero subspace, a line, a plane, some other space).
 - **(b).** [6 pts] Does the equation $A\vec{x} = \vec{b}$ have a solution when $\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$?

Solve the equation for \vec{x} if there is a solution.

(c). [6 pts] Does the equation $A\vec{x} = \vec{b}$ have a solution when $\vec{b} = \begin{bmatrix} -4 \\ -2 \\ 3 \end{bmatrix}$?

Solve the equation for \vec{x} if there is a solution.