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Name:
October 29, 1997

Exam 2
Show your work in completing the following problems. There are 6 pages on the exam. Remember
to pace yourself; don’t spend too much time on a single problem. Good luck!

Points per problem:
Problem 1. 12 points Problem 2. 17 points
Problem 3. 17 points Problem 4. 18 points
Problem 5. 18 points Problem 6. 18 points

Extra Credit: 4 points

1. Give definitions for the following terms. Remember to write complete, coherent sentences.

(a). Linearly independent vectors:

(b). Null space of an m n matrix A:
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2. Find an equation aX bY cZ dW 0 which describes the “plane” in 4 spanned by the

vectors:

v1 1 0 1
3 0

v2 1 2 1 0
v3 1 0 1 1

2

3. Let and be fixed real numbers. Construct a 2 4 matrix A whose null space is the span of

the following two vectors.

v1

1
0

1

v2

0
1

3
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4. Consider the matrix

A
1 1 2 2 0
0 0 3 3 1
1 1 5 1 1

(a). Find a basis for the null space of A (i.e. for N A ).

(b). What is the dimension of N A ?

(c). Find a basis for the column space of A.

(d). What is the rank of A?

(e). What is the dimension of the left null space of A?
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5. Consider the following set of matrices regarded as vectors.

m1

1 0
0 1 2
1 0

m2

0 1
1 2 0
0 1

and m3

0 0
0 0
1 1

(a). Decide whether the set m1 m2 m3 is linearly independent. Justify your answer.

(b). Decide whether the matrix
10 10
5 5
2 2

is in the span of m1 m2 m3 . Again, justify your

answer.
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6. Decide if the following statements are true or false, and give a brief explanation or example

(whichever is appropriate).

(a). If A is a 20 30 matrix, there are always at least 10 linearly independent vectors in the null
space of A.

(b). The rows of a 4 5 matrix are always linearly dependent.

(c). The set a b : a b is a subspace of 2 .



Professor G. McNinch Math 221 – Section 02 6

7.

EXTRA CREDIT: (4 POINTS)

Let i 1. Find a complex number z a ib so that v
i
z

is in the null space of the matrix

A
1 i 2

1 1 i


