Name:
October 29, 1997

## Exam 2

Show your work in completing the following problems. There are 6 pages on the exam. Remember to pace yourself; don't spend too much time on a single problem. Good luck!

```
Points per problem:
    Problem 1. 12 points Problem 2. 17 points
    Problem 3. 17 points Problem 4. 18 points
    Problem 5. 18 points Problem 6. 18 points
    Extra Credit: 4 points
```

1. Give definitions for the following terms. Remember to write complete, coherent sentences.
(a). Linearly independent vectors:
(b). Null space of an $m \times n$ matrix $A$ :
2. Find an equation $a X+b Y+c Z+d W=0$ which describes the "plane" in $\mathbb{R}^{4}$ spanned by the vectors:

$$
\begin{aligned}
& v_{1}=\left(1,0, \frac{1}{3}, 0\right) \\
& v_{2}=(1,2,1,0) \\
& v_{3}=\left(1,0,1, \frac{1}{2}\right)
\end{aligned}
$$

3. Let $\alpha$ and $\beta$ be fixed real numbers. Construct a $2 \times 4$ matrix $A$ whose null space is the span of the following two vectors.

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
\alpha \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
0 \\
-1 \\
\beta \\
3
\end{array}\right]
$$

4. Consider the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 2 & 2 & 0 \\
0 & 0 & 3 & -3 & 1 \\
1 & 1 & 5 & -1 & 1
\end{array}\right]
$$

(a). Find a basis for the null space of $A$ (i.e. for $N(A))$.
(b). What is the dimension of $N(A)$ ?
(c). Find a basis for the column space of $A$.
(d). What is the rank of $A$ ?
(e). What is the dimension of the left null space of $A$ ?
5. Consider the following set of matrices regarded as vectors.

$$
\vec{m}_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 2 \\
1 & 0
\end{array}\right], \vec{m}_{2}=\left[\begin{array}{cc}
0 & 1 \\
1 / 2 & 0 \\
0 & 1
\end{array}\right], \text { and } \vec{m}_{3}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]
$$

(a). Decide whether the set $\left\{\vec{m}_{1}, \overrightarrow{m_{2}}, \overrightarrow{m_{3}}\right\}$ is linearly independent. Justify your answer.
(b). Decide whether the matrix $\left[\begin{array}{cc}10 & 10 \\ 5 & 5 \\ \sqrt{2} & \sqrt{2}\end{array}\right]$ is in the span of $\left\{\vec{m}_{1}, \vec{m}_{2}, \vec{m}_{3}\right\}$. Again, justify your answer.
6. Decide if the following statements are true or false, and give a brief explanation or example (whichever is appropriate).
(a). If $A$ is a $20 \times 30$ matrix, there are always at least 10 linearly independent vectors in the null space of $A$.
(b). The rows of a $4 \times 5$ matrix are always linearly dependent.
(c). The set $\{(a, b): a \geq b\}$ is a subspace of $\mathbb{R}^{2}$.
7.

## Extra Credit: (4 Points)

Let $i=\sqrt{-1}$. Find a complex number $z=a+i b$ so that $\vec{v}=\left[\begin{array}{l}i \\ z\end{array}\right]$ is in the null space of the matrix

$$
A=\left[\begin{array}{cc}
1+i & 2 \\
1 & 1-i
\end{array}\right]
$$

