Name: \qquad
October 17, 1997

Practice Exam 2

1. Give definitions for each of the following terms.
2. a subspace of a vector space
3. the null space of a matrix A
4. an echelon matrix U
5. the free variables in a matrix equation $U \vec{x}=\overrightarrow{0}$, where U is an echelon matrix.
6. homogeneous equation and homogeneous solution.
7. the rank of a matrix A
8. linearly independent vectors
9. the span of some vectors
10. a basis of a vector space
11. the dimension of a vector space
12. orthogonal subspaces of \mathbb{R}^{n}
13. the orthogonal complement of a subspace of \mathbb{R}^{n}
14. Decide which of the following sets of vectors are subspaces. Explain your reasoning. (Make sure that you indicate what conditions must be satisified for a set of vectors to be a subspace).
(a). Is $\{(a-b, a+b, 3 a-2 b): a, b \in \mathbb{R}\}$ a subspace of \mathbb{R}^{3} ?
(b). Is $\{(a, 2 b, 3 a+2 b, b+1): a, b \in \mathbb{R}\}$ a subspace of \mathbb{R}^{4} ?
15. Construct a 2×4 matrix whose null space is the span of $\left[\begin{array}{c}-1 \\ 0 \\ -1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 2\end{array}\right]$ in \mathbb{R}^{4}. What is the rank of your matrix?
16. Consider the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 3 \\
0 & 0 & 1 & 2 & \frac{1}{2} \\
2 & 0 & 5 & 0 & \frac{13}{2} \\
0 & 0 & 2 & 4 & 1
\end{array}\right]
$$

(a). Find the null space of A.
(b). If possible give the general solution to $A \vec{x}=\vec{b}$ when $\vec{b}=(1,1,3,2)$ and when $\vec{b}=(1,1,-1,0)$.
5.
(a). Find an equation of the form

$$
a x+b y+c z=0
$$

for the plane in \mathbb{R}^{3} consisting of all linear combinations $\left\{t\left(1, \frac{1}{2}, \frac{1}{3}\right)+s\left(1, \frac{1}{4}, \frac{1}{5}\right): t, s \in \mathbb{R}\right\}$. (Hint: Consider the augmented matrix

$$
\left[\begin{array}{ll}
A & \vec{\beta}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & \beta_{1} \\
\frac{1}{2} & \frac{1}{4} & \beta_{2} \\
\frac{1}{3} & \frac{1}{5} & \beta_{3}
\end{array}\right]
$$

Now find conditions on the β_{i} so that $A \vec{x}=\vec{\beta}$ has a solution.)
(b). Find an equation of the form

$$
a x+b y+c z+d w=0
$$

for the "plane" in \mathbb{R}^{4} spanned by the vectors

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right]\right\}
$$

6. Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & t & 1 \\
t & s & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(a). For what values of s and t does A have rank 2? rank 3?
(b). If s and t are chosen so that A has rank 2, find the nullspace of A and the left nullspace of A.
7. Decide which of the following sets of vectors are linearly independent. Demonstrate your reasoning (don't just write down "yes" or "no"!)
(a). $\{(1,0, a, b),(0,2, c, d),(0,0,1, e)\}$ where a, b, c, d, e are fixed constants.
(b). the matrices $\left\{\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right\}$ regarded as vectors.
(c). the columns of the matrix $\left[\begin{array}{ccc}1 & 2 & 8 \\ 2 & -1 & 1 \\ \frac{1}{2} & \frac{-1}{3} & 0\end{array}\right]$.
8. Find bases for the following spaces.
(a). The null space of the matrix $A=\left[\begin{array}{ccccc}1 & -1 & 1 & -1 & 2 \\ 0 & 0 & 1 & 1 & 1\end{array}\right]$.
(b). Find a basis for the space of all upper triangular 3×3 matrices $U=\left[\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right]$ such that $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is in the nullspace of U.
9. Decide whether the following statements are True of False, and tell why.
(a). There is always a non- 0 vector in the null space of the matrix $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right]$.
(b). If the rank r of a matrix A is the same as the number of columns of A, then the equation $A \vec{x}=\vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^{r}$.
(c). If U is an echelon form of the matrix A, then $R(A)=R(U)$.
(d). If A is a 2×18 matrix, there are always at least 16 linearly independent vectors in the null space of A.
10. Find bases for the four subspaces associated with the matrix $A=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & 2 & 2\end{array}\right]$.
11. Find a vector \vec{v} in \mathbb{R}^{4} which is orthogonal to the space spanned by

$$
\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
3 \\
0
\end{array}\right], \text { and }\left[\begin{array}{l}
0 \\
0 \\
1 \\
4
\end{array}\right] .
$$

What is the orthogonal complement of the line through \vec{v} ?

