Name:
November 19, 1997

Practice Exam 3

The exam will cover $\S 4.2$ to $\S 6.2$.

1. Give definitions for each of the following terms.
2. An orthogonal basis.
3. An orthonormal basis.
4. An orthogonal matrix.
5. The cofactor matrix of a matrix.
6. The cross product $\vec{v} \times \vec{w}$ of two vectors $\vec{v}, \vec{w} \in \mathbb{R}^{3}$.
7. An eigenvector and its eigenvalue.
8. (Projections)
(a). Consider the vector $\vec{v}=(1,-2,-1,2) \in \mathbb{R}^{4}$. Compute the projection matrix for \vec{v} and compute the projection of $\vec{w}=(1,0,0,0)$ and $\vec{u}=(a, a, b, b)$ onto the line through \vec{v}.
(b). The column space of $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1 \\ 3 & 0\end{array}\right]$ is a plane in \mathbb{R}^{3}. Find the edges of the projection of the square with vertices $(0,0,0),(1,0,0),(0,1,0)$, and $(1,1,0)$. What kind of shape is the projection?
9. Find an orthonormal basis for the column space of the matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \\ 0 & 2 & 1\end{array}\right]$. Write the vector $(4,3,4,3)$ as a linear combination of your orthonormal basis.
10. Sketch brief arguments for the following statements:
(a). Any set q_{1}, \ldots, q_{m} of orthonormal vectors is always linearly independent.
(b). Suppose that v_{1}, v_{2}, v_{3} are eigenvectors for the matrix A with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$. Assume that $\lambda_{1} \neq \lambda_{2}, \lambda_{1} \neq \lambda_{3}$, and $\lambda_{2} \neq \lambda_{3}$. Show that the vectors v_{1}, v_{2}, v_{3} are linearly independent.
11. Let $Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\frac{1}{5}\left[\begin{array}{ll}1 & 3 \\ 3 & 9\end{array}\right]$. Compute Q^{-1}. Solve the equation $Q \vec{x}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, and solve the equation $Q \vec{x}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
12. Consider the matrix equation $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ \alpha\end{array}\right]$, where $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & 0 & 2\end{array}\right]$. For what α is the z coordinate of the solution (x, y, z) equal to 0 ? (HINT: use Cramer's rule).
13. Let $A_{1}=[3], A_{2}=\left[\begin{array}{cc}3 & -1 \\ -1 & 3\end{array}\right], A_{3}=\left[\begin{array}{ccc}3 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 3\end{array}\right], A_{4}=\left[\begin{array}{cccc}3 & -1 & 0 & 0 \\ -1 & 3 & -1 & 0 \\ 0 & -1 & 3 & -1 \\ 0 & 0 & -1 & 3\end{array}\right]$, etc. So A_{k} is a $k \times k$ matrix, has 3's on the main diagonal, and has -1 's immediately above and below the main diagonal.
(a). Compute $\left|A_{1}\right|$ and $\left|A_{2}\right|$.
(b). Using cofactors, obtain a formula for $\left|A_{k}\right|$ in terms of $\left|A_{l}\right|$ for $l<k$.
(c). Can you give an argument as to why $\left|A_{k}\right|$ is divisible by 3 when k is odd?
14. Decide whether the following are true or false; give a brief reason if true and an example if false.
(a). If the columns of the matrix A are orthogonal, then $A^{T} \cdot A$ is a diagonal matrix.
(b). The set of all eigenvectors with the same eigenvalue λ is a subspace of \mathbb{R}^{m}.
(c). If v_{1} is an eigenvector with eigenvalue λ_{1} and v_{2} is an eigenvector with eigenvalue λ_{2}, then $v_{1}+v_{2}$ is an eigenvector with eigenvalue $\lambda_{1}+\lambda_{2}$.
15. Let $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -2\end{array}\right]$.
(a). Find S so that $S^{-1} A S=\Lambda$ is a diagonal matrix.
(b). Compute A^{-5}. (Hint: compute Λ^{-5} and use S.)
16. Find the area of the parallelogram in \mathbb{R}^{2} with vertices $(1,1),(2,4),(1,4)$, and $(2,7)$.
