[time,mathptm]article
Solutions to Practice Problems Exam 1
document
The question are not guaranteed to be correct.
(3) (True/False questions)
a. False. An example is obtained by taking $\vec{u}=\vec{v}$ and $\vec{w}=-\vec{v}$.
b. False. An example is: $A=B=I$ (identity matrix).
c. False. The set doesn't contain the zero vector.
d. True. $\cos (t)$ is not a multiple of $\sin (t)$ (nor vice versa).
e. True. Any spanning set contains a linearly independent spanning set.
f. True. $N u l(A)=0$ means that the columns are linearly independent.
(4) a. $H=\operatorname{Span}($ bmatrix 1
b. The solutions are $H_{1}=$ bmatrix 2
(5) a. T(bmatrixa
b. T (bmatrixa
c. $S=$ bmatrix 1
d. $\vec{e}_{3}+$ bmatrix 1
(6) a. False. $I 0=0$.
b. False $-I+I$ is not invertible.
c. True.
d. True.
f. False. $A=0$.
(7) a. $-K K=I$. So $(-K) K=I$. Hence by the invertible matrix theorem K is invertible.
b. Just multiple it out.
c. $K K=P J P^{-1} P J P^{-1}=P J^{2} P^{-1}=P(-I) P^{-1}=-P P^{-1}=-I$.
d. There are infinitely many invertible matrices P.
(8) a. bmatrix 01300
b. bmatrix $119-a$
c. bmatrix $\cos (\theta)-\sin (\theta)$
(9) a. No
b. Yes $x_{1}=-2, x_{2}=3$.
(10) a. $a_{1} a_{2} a_{3}$.
b. 6 .
(11) $E=$ bmatrix $\sqrt{[4]} 300$
(12) $\operatorname{det}(c I-A)=c^{3}-2 c$. So $c I-A$ is invertible unless $c=0, \sqrt{(2)},-\sqrt{(2)}$.
(13) a. Note that A is row equivalent to the reduced echelon matrix $B=$ bmatrix 1010
b. The pivots in B occur in the 1st, 2nd and 4 th columns. Thus columns $1,2,4$ of A are pivot columns, hence those columns are a basis.
(14) Abmatrix 111
(15) Let \vec{u} be a non-zero vector in V, and let c be a scalar. Assume that $c \vec{u}=\overrightarrow{0}$. If $\neq 0$, then we may speak of the number $1 c=c^{-1}$. Moreover, using properties of vector spaces, we see that

$$
\begin{gathered}
\overrightarrow{0}=c \vec{u} \\
c^{-1}(\overrightarrow{0}=c \vec{u}) \\
0=\vec{u}
\end{gathered}
$$

But \vec{u} is not $\overrightarrow{0}$, so the only possibility is that in fact $c=0$.
(16) a. $T(g(t))=$ bmatrixg (0)
b. $f \in \operatorname{Ker}(T)$ iff $f(0)=0$ and $f(1)=0$. Hence $f(t)=c t(t-1)$. So $f(t)=t(t-1)=t^{2}-t$ is a basis.
c. $T(1-t)=$ bmatrix 1
(17) Observe that A is row equiv to the following reduced echelon matrix bmatrix $100-1$
(18) Since the two elements of B are not multiples of one another, they are linearly independent. They span R^{2} and hence they form a basis of R^{2}.

