Provide the precise definition of each of the following concept: The span of a set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.

A set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ being linearly independent.

The elementary row operations.

The determinant of an $n \times n$ matrix A.

TRUE/FALSE. Determine whether the followings statements are true or false. Be sure to provide a reason for your answer. Let $T: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a set of linearly independent vectors in \mathbf{R}^{m}. Then the set of vectors $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is also linearly independent.

Let A and B be two invertible matrices. Then $A B A^{-1}$ is invertible.

If A and B are square and $A B=I$ then $\operatorname{det}(A)=0$.

Let $T(\mathbf{x})$ be a linear transformation. T is one to one if and only if the kernel of T is $\{0\}$.

Let A be the following matrix:

$$
A=a b c d e f g h i
$$

if $\operatorname{det} A=1$ then (hint: use the properties of determinant) $\operatorname{det} a b c$ $-2 d-2 e-2 f$
$g h i=$?
$\operatorname{det} a b c$
$a+d b+e c+f$
$g h i=$?

Describe the null space of the matrix: $A=1-11-1$

- $22-13$

3-231
$4-44-4$. Find all solutions of the equation $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=-2$
8

4
-8.

Write 1
4 as a linear combination of 1
1 and -1
2.

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation. If $T(1,1)=(2,3), T(-1,2)=$ $(4,5)$ then $T(1,4)=$?.

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be linearly independent vectors. Show that $\mathbf{v}_{1}, \mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{1}-$ $\mathbf{v}_{2}+\mathbf{v}_{3}$ are linearly independent vectors.

