Provide the precise definition of each of the following concept: The span of a set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.

All linear combinations of the vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. All vectors of the form $c_{1} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{v}_{n}$.

A set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ being linearly independent.
The only solution of to $c_{1} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{v}_{n}=\mathbf{0}$ is $c_{i}=0$ for all i.
The elementary row operations.
Scaling (multiplying a row by a scalar), add a multiple of a row to another row, and switch two rows.

The determinant of an $n \times n$ matrix A.
The cofactor expansion along the first row. $\operatorname{det}(A)=\sum_{j=1}^{n} a_{1, j}(-1)^{j+1} \operatorname{det}\left(A_{1, j}\right)$.
TRUE/FALSE. Determine whether the followings statements are true or false. Be sure to provide a reason for your answer. Let $T: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a set of linearly independent vectors in \mathbf{R}^{m}. Then the set of vectors $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is also linearly independent.

FALSE. Consider $T: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ by $T(\mathbf{x})=\mathbf{0}$.
Let A and B be two invertible matrices. Then $A B A^{-1}$ is invertible.
TRUE. $\left(A B^{-1} A^{-1}\right)\left(A B A^{-1}\right)=I$.
If A and B are square and $A B=I$ then $\operatorname{det}(A)=0$.
FALSE. A is invertible and hence $\operatorname{det}(A) \neq 0$.
Let $T(\mathbf{x})$ be a linear transformation. T is one to one if and only if the kernel of T is $\{0\}$.

TRUE. This was a lemma from class. $T(\mathbf{0})=\mathbf{0}$. So if T is one to one then the kernel of T is $\{0\}$. Now assume the kernel of T is $\{0\}$ and T is not one to one. So $T(\mathbf{x})=T(\mathbf{y})$ where $\mathbf{x} \neq \mathbf{y} . \mathbf{0}=T(\mathbf{x})-T(\mathbf{y})=T(\mathbf{x}-\mathbf{y})$. Hence $\mathbf{x}-\mathbf{y} \neq \mathbf{0}$ is in the kernel of T. Contradiction.

Let A be the following matrix:

$$
A=a b c d e f g h i
$$

if $\operatorname{det} A=1$ then (hint: use the properties of determinant) $\operatorname{det} a b c$ $-2 d-2 e-2 f$ $g h i=$?

The above matrix is the result of scaling the second row of A by -2 . This action multiples determinant of A by -2 . So the determinant is -2 .
$\operatorname{det} a b c$
$a+d b+e c+f$
$g h i=$?
The above matrix is the result of adding the first row to the second row of A. This action does not affect the determinant. The determinant is 1 .

Describe the null space of the matrix: $A=1-11-1$

- $22-13$

3-231
$4-44-4$. Find all solutions of the equation $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=-2$
8
4
-8.
To save time we will row-reduce the matrix $[A \mid \mathbf{b}]$. It reduces to 10024
010410
00114
00000. Hence a spanning set for the null space is -2

- 4
-1

1. A solution for $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}_{p} 4$

10
4
0 and all the solutions are in the form $\mathbf{x}_{p}+\mathbf{x}$, where \mathbf{x} is in the null space of A.

Write 1
4 as a linear combination of 1
1 and -1
2.

We must solve the equation $x_{1} 1$
$1+x_{2}-1$
$2=1$
4. The augmented matrix of this system is $1-11$

124 which row-reduces to 102
011. Hence 21
$1+-1$
$2=1$
4.

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation. If $T(1,1)=(2,3), T(-1,2)=$ $(4,5)$ then $T(1,4)=$?.
$T(1,4)=T(2(1,1)+(-1,2))=2 T(1,1)+T(-1,2)=2(2,3)+(4,5)=$ $(4,6)+(4,5)=(8,11)$, since T is a linear transformation.

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be linearly independent vectors. Show that $\mathbf{v}_{1}, \mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{1}-$ $\mathbf{v}_{2}+\mathbf{v}_{3}$ are linearly independent vectors.

Assume that $x_{1} \mathbf{v}_{1}+x_{2}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)+x_{3}\left(\mathbf{v}_{2}+\mathbf{v}_{3}\right)=\mathbf{0}$. Then $\left(x_{1}+x_{2}\right) \mathbf{v}_{1}+$ $\left(-x_{2}+x_{3}\right) \mathbf{v}_{3}+x_{3} \mathbf{v}_{3}=\mathbf{0}$. Since $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent vectors, $x_{1}+x_{2}=0,-x_{2}+x_{3}=0$ and $x_{3}=0$. Hence the $x_{0}=x_{1}=x_{2}=0$ and therefore $\mathbf{v}_{1}, \mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{3}$ are linearly independent vectors

