Solutions: Practise Exam 2

2.
3. False: every set of 5 or more vectors in \mathbb{R}^{4} is linearly dependent since the dimension of \mathbb{R}^{4} is 4 .
4. False: a subspace has smaller (\leq) dimension.
5. False: the identity matrix is a counter example.
6. True: $P\left(I_{m}+A\right) P^{-1}=I_{m}+P A P^{-1}=I_{m}+B$.
7. True: the eigenvectors form a subspace.
8. True: if v is an eigenvector for the eigenvalues λ of A then it is an eigenvector for the eigenvalues λ^{m} of A^{m}
9. True: by the Rank Theorem the dimension of null space $=\mathrm{n}-\mathrm{rank}=3-3$ $=0$.
10. True: it is clear the rank of the matrix:

$$
\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

is 2 (this problem is slightly too hard).
3. It is clear that the matrix is row equivalent to the matrix

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

thus x_{3} is free and the null space is spanned by the vector $(-1,-3,1,0)$. The column space is spanned by the 3 vectors $(1,0,0),(0,1,0),(2,0,1)$. The rank of $A=3$.
4. The rank of $A=9-4=5$ so there are 5 pivots and the dimension of the row space is 5 .
5. A basis is given by the vectors $\mathcal{B}=\left\{\vec{a}_{1}=(1,0,0), \vec{a}_{2}=(2,1,0), \vec{a}_{3}=\right.$ $(0,3,1)\}$. It is clear that $\left[\vec{a}_{1}\right]_{\mathcal{B}}=(1,0,0),\left[\vec{a}_{2}\right]_{\mathcal{B}}=(0,1,0),\left[\vec{a}_{3}\right]_{\mathcal{B}}=(0,0,1)$. The vector $(1,1,0)=-\vec{a}_{1}+\vec{a}_{2}$ so $[(1,1,0)]_{\mathcal{B}}=(-1,1,0)$.
6. (a) It is clear that

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right] \sim\left[\begin{array}{cc}
1 & 1 \\
0 & -3
\end{array}\right]
$$

so the two column vectors are linearly independent. (b) $\vec{x}=2(1,1)+(1,-2)=$ $(3,0)$. (c) $(2,1)=5 / 3(1,1)+1 / 3(1,-2)$ thus $[(2,1)]_{\mathcal{B}}=(5 / 3,1 / 3)$.
7. (a) $[\mathbf{p}]_{\mathcal{E}}=[1,1,1]^{T},[\mathbf{q}]_{\mathcal{E}}=[1,2,3]^{T}$ (b) the two vectors are linearly independent because $[1,1,1]^{T},[1,2,3]^{T}$ are not multiple of each other.
8. $A=P B P^{-1}, B=Q C Q^{-1}$ so $A=P Q C Q^{-1} P^{-1}=(P Q) C(P Q)^{-1}$.
9. This is a Theorem in the textbook.
10. The characteristic polynomial is $(3-\lambda)(2-\lambda)-4=\lambda^{2}-5 \lambda+2$. The two eigenvalues are $\lambda_{1}=(5+\sqrt{17}) / 2, \lambda_{2}=(5-\sqrt{17}) / 2$. An eigenvector of λ_{1} is obtained by taking a solution of the matrix

$$
\left[\begin{array}{cc}
\frac{1-\sqrt{17}}{2} & 2 \\
2 & \frac{-1-\sqrt{17}}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

for example,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1+\sqrt{17}}{4} \\
1
\end{array}\right] .
$$

An eigenvector of λ_{2} is obtained by taking a solution of the matrix

$$
\left[\begin{array}{cc}
\frac{1+\sqrt{17}}{2} & 2 \\
2 & \frac{-1+\sqrt{17}}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

for example,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{1+\sqrt{17}}{4}
\end{array}\right] .
$$

The matrix P is formed by taking these 2 eigenvectors as columns:

$$
P=\left[\begin{array}{cc}
\frac{1+\sqrt{17}}{4} & 1 \\
1 & -\frac{1+\sqrt{17}}{4}
\end{array}\right]
$$

(The numbers here are fairly bad and this problem would not OK for an exam.)
11. (a) The condition

$$
c_{1} E_{11}+c_{2} E_{12}+c_{3} E_{21}+c_{4} E_{22}=\overrightarrow{0}
$$

is equivalent to the condition

$$
\left[\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

i.e., $c_{1}=c_{2}=c_{3}=c_{4}=0$ so $\operatorname{dim} V=4$.
(b) $T\left(M_{1}+M_{2}\right)=A\left(M_{1}+M_{2}\right)-\left(M_{1}+M_{2}\right)=A M_{1}-M_{1}+A M_{2}-M_{2}=$ $T\left(M_{1}\right)+T\left(M_{2}\right) ; T(c M)=A(c M)-c M=c(A M-M)=c T(M)$.
(c) The matrix of T is obtaind by consider the image of the basis under T :

$$
\begin{gathered}
T\left(E_{11}\right)=\left[\begin{array}{ll}
0 & -1 \\
0 & -2
\end{array}\right]=-E_{12}-2 E_{22}, \\
T\left(E_{12}\right)=\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]=E_{11}-2 E_{22} \\
T\left(E_{21}\right)=\left[\begin{array}{ll}
0 & -1 \\
2 & -2
\end{array}\right]=-E_{12}+2 E_{21}-2 E_{22} \\
T\left(E_{22}\right)=\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]=-E_{11}
\end{gathered}
$$

Thus the matrix of T is given by

$$
\left[\begin{array}{cccc}
0 & -1 & 0 & -1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 2 & 0 \\
-2 & -2 & -2 & 0
\end{array}\right]
$$

(d) The matrix is invertible so the null space is trivial.
12. (a) and (b) Obviously we have to exclude $h=0$. Next we find the null space of the matrix

$$
A-I_{4}=\left[\begin{array}{cccc}
0 & 1 & 1 / h & 1 \\
0 & 1 & h & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2
\end{array}\right] \sim\left[\begin{array}{cccc}
0 & 1 & 1 / h & 0 \\
0 & 0 & h-1 / h & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

thus we see that the dimension of the column space is 3 unless $h=1$ and for $h=1$ the dimension of the column space is 2 . By Rank Theorem we conclude that the dimension of the null space is 2 if and only if $h=1$ (and if $h \neq 1$ then the dimension of the null space is 1). If $h=1$ then the matrix is diagonalizable because we then get 4 linearly independent eigenvectors, 2 for the eigenvalue 1 and one each of the eigenvalues 2 and 3. (c) for $\lambda=3$ we consider the null space of the matrix

$$
A-3 I_{4}=\left[\begin{array}{cccc}
-2 & 1 & 1 / h & 1 \\
0 & -1 & h & 1 \\
0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
-2 & 0 & 0 & 2+(1 / h+h) / 2 \\
0 & -1 & 0 & 1+h / 2 \\
0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so x_{4} is a free variable and so $[1+(1 / h+h) / 4,1+h / 2,1 / 2,1]^{T}$ is an eigenvector.
13. (a) $A \vec{b}_{1}=[\sqrt{5}, 5+2 \sqrt{5}]^{T}=\sqrt{5} \vec{b}_{1}$ so $\left[A \vec{b}_{1}\right]_{\mathcal{B}}=[\sqrt{5}, 0]^{T}$. $A \vec{b}_{2}=[-\sqrt{5}, 5-$ $2 \sqrt{5}]^{T}=-\sqrt{5} \vec{b}_{2}$ so $\left[A \vec{b}_{2}\right]_{\mathcal{B}}=[0,-\sqrt{5}]^{T}$. (b) the matrix representing the linear transformation relative to the basis \mathcal{B} is given by

$$
\left[\begin{array}{cc}
\sqrt{5} & 0 \\
0 & -\sqrt{5}
\end{array}\right]
$$

(c) this means we are solving the equation

$$
\left[\begin{array}{cc}
\sqrt{5} & 0 \\
0 & -\sqrt{5}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

and the solution is clearly $c_{1}=1 / \sqrt{5}, c_{2}=-2 / \sqrt{5}$.
14. The 3 given vectors are linearly independent which shows that the column space is 3 dimension, i.e., the rank of the matrix is 3 hence the dimension of the null space is 0 because $\operatorname{dim} \operatorname{nul}(A)+3=3$.

