(4 points each.) Provide the precise definition of each of the following concept: The basis of a vector space V.

A finite-dimensional vector space V.

The eigenvalues of a matrix A.

Two matrices A and B are similar.

TRUE/FALSE. Determine whether the followings statements are true or false. Be sure to provide a reason for your answer. (2 points each for correct answer; 2 points each for correct reason.) $\quad A$ is invertible iff $\lambda=0$ is not a eigenvalue of A.

Let A be a $m \times n$ matrix. Then the column space of A plus the nullspace of A^{T} is n.

The dimension of P^{3} (all polynomials of degree 3 or less) is 3 .

All diagonalizable matrices are invertible.
(20 points.) Let $A=1021$
0101
1122
Row reduce A.
Find a basis for the column space of A. What the dimension of the column space A ?

Find a basis for the row space of A. What the dimension of the row space A ?

Find a basis for the null space of A. What the dimension of the null space A?
(20 points.) Let $A=2 d 1$
022
003

For what values of d is A diagonalizable? For any such value, diagonalize A (do not find P^{-1}).
(15 points.) Consider the vector space $V=\mathbf{M}_{2}$ of 2×2 matrices. Let $\mathrm{B}=$ $\left\{E_{1,1}=1000, E_{1,2}=0100, E_{2,1}=0010, E_{2,2}=0001\right\}$.

From the sample exam (problem $\# 12$) we know \mathcal{B} is a basis for V.
Let $T: V \rightarrow V$ be given by the rule $T(M)=M-M^{T}$. Show that T is a linear transformation. Compute the matrix N of T relative of the basis \mathcal{B}. (As in problem \#12 N is a 4×4 matrix, not a 2×2 matrix.)
(15 points.) Let A be a 5×8 matrix whose rank is 5 . Show that $A \vec{x}=\vec{b}$ is consistent and has infinitely many solutions for all \vec{b} in R^{5}.

