(4 points each.) Provide the precise definition of each of the following concept: The basis of a vector space V.

B is a basis for V iff the span of B is V and S is linearly independent.

A finite-dimensional vector space V.

A vector space that has a finite basis.

The eigenvalues of a matrix A.

 $\lambda$  is an eigenvalue if there is a non-zero vector  $\vec{x}$  such that  $A\vec{x} = \lambda \vec{x}$ .

Two matrices A and B are similar.

A and B are similar iff there is a invertible matrix P such that  $A = PBP^{-1}$ .

TRUE/FALSE. Determine whether the followings statements are true or false. Be sure to provide a reason for your answer. (2 points each for correct answer; 2 points each for correct reason.) A is invertible iff  $\lambda = 0$  is not a eigenvalue of A.

TRUE.  $\lambda$  is an eigenvalue of A iff the nullspace of  $A - \lambda$  is **0** (the vector space with just the zero vector). So 0 is an eigenvalue of A iff nullspace of A is not **0** iff A is not invertible.

Let A be a  $m \times n$  matrix. Then the column space of A plus the nullspace of  $A^T$  is n.

FALSE. The rank theorem tells us that the rank of A plus the dimension of the nullspace of A is n. So the rank of  $A^T$  plus the dimension of the nullspace of A is m. The rank of  $A^T$ , rank of A, dimension of the column space of A and the rowspace of A are the same.

The dimension of  $P^3$  (all polynomials of degree 3 or less) is 3.

FALSE.  $\{1, t, t^2, t^3\}$  is a basis for  $P^3$  hence  $P^3$  has dimension 4.

All diagonalizable matrices are invertible.

FALSE. A10

00 is diagonalizable not invertible.

(20 points.) Let A = 1021

0101

1122

Row reduce A.

Find a basis for the column space of A. What the dimension of the column space A?

Find a basis for the row space of A. What the dimension of the row space A?

Find a basis for the null space of A. What the dimension of the null space A?

A row reduces to 1021

0101

0000

. The first two columns of A form a basis for the column space of A which has dimension 2. The first two rows of A form a basis for the row space of A which has dimension 2. (-2,0,1,0) and (-1,-1,0,1) form a basis for the null space of A which also has dimension 2.

```
(20 points.) Let A = 2d1
022
003
   For what values of d is A diagonalizable?
                                                For any such value, diagonalize
A (do not find P^{-1}).
   The goal is to diagonalize A. The eigenvalues are 2 and 3. This is only
possible if eigenspace corresponding the \lambda = 2 has dimension 2. If \lambda = 2,
A - \lambda I = 0d1
002
003
  So the eigenspace corresponding the \lambda = 2 has dimension 2 iff d = 0.
Lets assume d=0. Then a basis for eigenspace corresponding the \lambda=2 is
(1,0,0),(0,1,0). If \lambda=1 (and d=0), A-\lambda I=-101
0 - 12
000
which row reduces to 10-1
01 - 2
000
. So a basis for eigenspace corresponding the \lambda = 3 is (1, 2, 1). Hence P = 101
012
001
and D = 200
```

(15 points.) Consider the vector space  $V = \mathbf{M}_2$  of  $2 \times 2$  matrices. Let  $B = \{E_{1,1} = 1000, E_{1,2} = 0100, E_{2,1} = 0010, E_{2,2} = 0001\}$ .

From the sample exam (problem #12) we know  $\mathcal{B}$  is a basis for V.

 $020 \\ 003.$ 

Let  $T: V \to V$  be given by the rule  $T(M) = M - M^T$ . Show that T is a linear transformation. Compute the matrix N of T relative of the basis  $\mathcal{B}$ . (As in problem #12 N is a  $4 \times 4$  matrix, not a  $2 \times 2$  matrix.)

- (a)  $T(cM_1 + dM_2) = (cM_1 + dM_2) (cM_1 + dM_2)^T = (cM_1 + dM_2) c(M_1)^T + d(M_2)^T = c(M_1 (M_1)^T) + d(M_2 (M_2)^T) = cT(M_1) + dT(M_2)$ . So T is a linear transformation.
- (b)  $T(E_{1,1}) = \vec{0}$ ,  $T(E_{1,2}) = E_{1,2} E_{2,1}$ ,  $T(E_{2,1}) = E_{2,1} E_{1,2}$  and  $T(E_{2,2}) = \vec{0}$ .

$$N = 000001100 - 1 - 100000.$$

(15 points.) Let A be a  $5 \times 8$  matrix whose rank is 5. Show that  $A\vec{x} = \vec{b}$  is consistent and has infinitely many solutions for all  $\vec{b}$  in  $R^5$ .

The column space of A has dimension 5. Since the column space of A is a subspace of  $\mathbf{R}^5$  and the dimension of  $\mathbf{R}^5$  is 5, the column space of A is  $\mathbf{R}^5$ . Hence for every  $\vec{b}$  in  $R^5$  is consistent. The nullspace of A has dimension 8-5=3. Thus the equation  $A\vec{x}=\vec{0}$  has infinitely solutions. Therefore there are infinitely many solutions for all equations  $A\vec{x}=\vec{b}$ .