(4 points each.) Provide the precise definition of each of the following concept: The basis of a vector space V.
B is a basis for V iff the span of B is V and S is linearly independent.
A finite-dimensional vector space V.
A vector space that has a finite basis.
The eigenvalues of a matrix A.
λ is an eigenvalue if there is a non-zero vector \vec{x} such that $A \vec{x}=\lambda \vec{x}$.
Two matrices A and B are similar.
A and B are similar iff there is a invertible matrix P such that $A=P B P^{-1}$.
TRUE/FALSE. Determine whether the followings statements are true or false. Be sure to provide a reason for your answer. (2 points each for correct answer; 2 points each for correct reason.) $\quad A$ is invertible iff $\lambda=0$ is not a eigenvalue of A.

TRUE. λ is an eigenvalue of A iff the nullspace of $A-\lambda$ is $\mathbf{0}$ (the vector space with just the zero vector). So 0 is an eigenvalue of A iff nullspace of A is not $\mathbf{0}$ iff A is not invertible.

Let A be a $m \times n$ matrix. Then the column space of A plus the nullspace of A^{T} is n.

FALSE. The rank theorem tells us that the rank of A plus the dimension of the nullspace of A is n. So the rank of A^{T} plus the dimension of the nullspace of A is m. The rank of A^{T}, rank of A, dimension of the column space of A and the rowspace of A are the same.

The dimension of P^{3} (all polynomials of degree 3 or less) is 3 .
FALSE. $\left\{1, t, t^{2}, t^{3}\right\}$ is a basis for P^{3} hence P^{3} has dimension 4 .
All diagonalizable matrices are invertible.
FALSE. A10
00 is diagonalizable not invertible.
(20 points.) Let $A=1021$
0101
1122
. Row reduce A.
Find a basis for the column space of A. What the dimension of the column space A ?

Find a basis for the row space of A. What the dimension of the row space A ?

Find a basis for the null space of A. What the dimension of the null space A?
A row reduces to 1021
0101
0000
. The first two columns of A form a basis for the column space of A which has dimension 2. The first two rows of A form a basis for the row space of A which has dimension 2. $(-2,0,1,0)$ and $(-1,-1,0,1)$ form a basis for the null space of A which also has dimension 2 .
(20 points.) Let $A=2 d 1$
022
003

For what values of d is A diagonalizable? For any such value, diagonalize A (do not find P^{-1}).

The goal is to diagonalize A. The eigenvalues are 2 and 3 . This is only possible if eigenspace corresponding the $\lambda=2$ has dimension 2. If $\lambda=2$, $A-\lambda I=0 d 1$
002
003
. So the eigenspace corresponding the $\lambda=2$ has dimension 2 iff $d=0$. Lets assume $d=0$. Then a basis for eigenspace corresponding the $\lambda=2$ is $(1,0,0),(0,1,0)$. If $\lambda=1($ and $d=0), A-\lambda I=-101$
$0-12$
000
which row reduces to $10-1$
01-2
000
. So a basis for eigenspace corresponding the $\lambda=3$ is $(1,2,1)$. Hence $P=101$
012
001
and $D=200$
020
003.
(15 points.) Consider the vector space $V=\mathbf{M}_{2}$ of 2×2 matrices. Let $\mathrm{B}=$ $\left\{E_{1,1}=1000, E_{1,2}=0100, E_{2,1}=0010, E_{2,2}=0001\right\}$.

From the sample exam (problem $\# 12$) we know \mathcal{B} is a basis for V.
Let $T: V \rightarrow V$ be given by the rule $T(M)=M-M^{T}$. Show that T is a linear transformation. Compute the matrix N of T relative of the basis \mathcal{B}. (As in problem \#12 N is a 4×4 matrix, not a 2×2 matrix.)
(a) $T\left(c M_{1}+d M_{2}\right)=\left(c M_{1}+d M_{2}\right)-\left(c M_{1}+d M_{2}\right)^{T}=\left(c M_{1}+d M_{2}\right)-$ $c\left(M_{1}\right)^{T}+d\left(M_{2}\right)^{T}=c\left(M_{1}-\left(M_{1}\right)^{T}\right)+d\left(M_{2}-\left(M_{2}\right)^{T}\right)=c T\left(M_{1}\right)+d T\left(M_{2}\right)$. So T is a linear transformation.
(b) $T\left(E_{1,1}\right)=\overrightarrow{0}, T\left(E_{1,2}\right)=E_{1,2}-E_{2,1}, T\left(E_{2,1}\right)=E_{2,1}-E_{1,2}$ and $T\left(E_{2,2}\right)=$ $\overrightarrow{0}$.

$$
N=000001100-1-100000
$$

(15 points.) Let A be a 5×8 matrix whose rank is 5 . Show that $A \vec{x}=\vec{b}$ is consistent and has infinitely many solutions for all \vec{b} in R^{5}.

The column space of A has dimension 5 . Since the column space of A is a subspace of \mathbf{R}^{5} and the dimension of \mathbf{R}^{5} is 5 , the column space of A is \mathbf{R}^{5}. Hence for every \vec{b} in R^{5} is consistent. The nullspace of A has dimension $8-5=3$. Thus the equation $A \vec{x}=\overrightarrow{0}$ has infinitely solutions. Therefore there are infinitely many solutions for all equations $A \vec{x}=\vec{b}$.

