The Final exam will is at 7:30-9:30 pm, Wednesday, December 13 in 117 $D B R T$. It is comprehensive and covers the following sections of Chapters 1-6: 1.1-1.8, 2.1-2.3, 3.1-3.3, 4.1-4.7, 5.1-5.4, 6.1-6.5.

You should use the practice exams for review material for the first 5 chapters, below you will find some problems for chapter 6. The last quiz is also a good place to look for problems for chapter 6.

The final will be about 1 and a half times longer than the past exams. As before there will be definitions, True/False problems, some short proofs and some computation problems. There will be more True/False problems but this time you do not have to give your reasoning.

Definitions/terminology from recent material.
If u, v are vectors in R^{n}, what is their inner product or dot product, $v \cdot u$? How does one compute $\|v\|$? What is the distance between u and v ? Be familiar with the "algebraic" properties of inner products (they are listed in your text; e.g. $u \cdot\left(v_{1}+v_{2}\right)=u \cdot v_{1}+u \cdot v_{2}$.) What is meant by an orthogonal set of vectors? an orthonormal set of vectors? What does it mean to say that a vector v is orthogonal to the subspace W ? What is meant by an orthogonal basis for a subspace W ? Define the orthogonal projection $\operatorname{Proj}_{W}(v)=\hat{v}$ of a vector v onto a subspace W. Be able to give a formula for this projection when an orthogonal basis $u_{1}, u_{2}, \cdots u_{m}$ of W is given. Understand how to carry out the Gram-Schmidt process of constructing an orthogonal basis. Understand the so-called $Q R$ decomposition of a matrix A. If the columns of A are independent, the Gram-Schmidt process yields an orthogonal (and even orthonormal) basis whose vectors form the columns of a matrix Q with $Q^{T} Q=I_{m}$ (what is m ?) Remember that $R=Q^{T} A$ is upper triangular (this is a good check that you have carried out Gram-Schmidt correctly). If U is an $m \times n$ matrix with orthonormal columns, review the properties of U : e.g. $U^{T} U=I_{n},\|U v\|=\|v\|$ for all vectors v in $R^{n}, U v \cdot U w=v \cdot w . U$ is said to be an orthogonal matrix.

True-False questions: If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal set and if c_{1}, c_{2}, c_{3} are scalars, then $\left\{c_{1} v_{1}, c_{2} v_{2}, c_{3} v_{3}\right\}$ is an orthogonal set. If $\|u-v\|^{2}=$ $\|u\|^{2}+\|v\|^{2}$, then u and v are orthogonal. Every orthogonal set in R^{n} is linearly independent. For an $m \times n$ matrix A, vectors in the $N u l A$ are orthogonal to vectors in $\operatorname{Col} A$. If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $x \mapsto A x$ preserves lengths. Let $W=\operatorname{Span}\left\{v_{1}, \cdots, v_{p}\right\}$. Then x is in W^{\perp} if and only if x is orthogonal to every $v_{i}, 1 \leq i \leq p$. If W is a subspace of R^{n} then the intersection of W and W^{\perp} is empty. If $y=z_{1}+z_{2}$, where z_{1} is in a subspace W and z_{2} is in W^{\perp}, then z_{1} must be the orthogonal projection of y onto W. If a square matrix has orthonormal columns, then it also has orthonormal rows. If an $n \times n$ matrix P has orthogonal columns, then $P^{T}=P^{-1}$.

If U is $m \times n$ with orthogonal columns, then $U U^{T} x$ is the orthogonal projection of x onto $C o l U$. The orthogonal projection of y onto u is a scalar multiple of y. If the orthogonal projection of a vector y onto a subspace W is zero, then y is in W^{\perp}.

Let U be an $n \times n$ orthogonal matrix. Show that if $\left\{v_{1}, \cdots, v_{n}\right\}$ is an orthonormal basis for R^{n}, then so is $\left\{U v_{1}, \cdots, U v_{n}\right\}$.

Show that if an $n \times n$ matrix U satisfies $(U x) \cdot(U y)=x \cdot y$ for all x and y in R^{n}, then U is an orthogonal matrix.

Given a vector v, show that the set $\left\{x \in R^{n} \mid x \cdot v=0\right\}$ form a subspace of R^{n}.

Let V be the subspace of R^{3} spanned by the vectors $\mathrm{v}_{1}=1$
1
1, $\quad v_{2}=1$

- 2
$2, \quad v_{3}=1$
-5

3. Find the dimension of the subspace V of R^{3} spanned by the vectors. Find a basis for the orthogonal space V^{\perp} of V. For what values of $c=c_{1}$
c_{2}
c_{3} does the following system of equations have a solution? $\mathrm{x} \quad 1$
1
1

+ y 1
-2
$2+\mathrm{z} 1$
-5
$3=c_{1}$
c_{2}
c_{3} If the equation is consistent, how many solutions are there?
Consider the vectors $\mathbf{x}_{\mathbf{1}}=1$
2
$1, \mathrm{x}_{2}=1$
1
0 , and $\mathbf{x}_{3}=0$
2

2. Let $W=\operatorname{Span}\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}\right\}$. Compute $\operatorname{dim} W$, and find a basis for W. Use the Gram-Schmidt process to find an orthogonal basis for the subspace W.

Let $\mathbf{v}_{\mathbf{1}}=1$
1
0
$0, \mathbf{v}_{\mathbf{2}}=1$

- 1

1
1 and $\mathbf{v}_{\mathbf{3}}=0$
0
1
-1 .
Show that $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is an orthogonal set.
Let $W=\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$. Compute $\operatorname{dim} W$.
Let $\mathbf{x}=-1$
-1
2

- 2. Compute the orthogonal projection $\hat{\mathbf{x}}=\operatorname{Proj}_{W}(\mathbf{x}) . \quad$ Let V be the subspace of R^{3} spanned by the vectors $\mathrm{v}_{1}=1$
1
1, $\quad \mathbf{v}_{\mathbf{2}}=1$
2
$\mathbf{v}_{\mathbf{3}}=1$
3

3. Find a basis for the orthogonal space V^{\perp} of V.

Consider the vector equation $x 1$
1
$1+y 1$
2
$2+z 1$
3
$3=c_{1}$
c_{2}
c_{3}. For what values of $\mathbf{c}=c_{1}$
c_{2}
c_{3} does the system have a solution $\mathbf{x}=x$
y
$z ?$
If the above equation has at least one solution \mathbf{x}, how many solutions does it have?

The best quadratic function $f(x)=c+d x+e x^{2}$ to fit the points $(-1,1),(0,1),(1,0)$ and $(2,2)$ is obtained using the formula $A^{T} A \hat{x}=A^{T} \vec{b}$. Find the matrix A and the vector \vec{b}. Solve for \hat{x}.

Find an orthonormal basis for $C(A)$ where -166
3-83
$1-26$
$1-4-3$. Find the $Q R$ decomposition of A.
Find all the least square solutions where $A=12$
24
$-1-2$
and $b=3$
2
1.

