The Final exam will is at 7:30-9:30 pm, Wednesday, December 13 in 117 DBRT. It is comprehensive and covers the following sections of Chapters 1-6: 1.1-1.8, 2.1-2.3, 3.1-3.3, 4.1-4.7, 5.1-5.4, 6.1-6.5.

You should use the practice exams for review material for the first 5 chapters, below you will find some problems for chapter 6. The last quiz is also a good place to look for problems for chapter 6.

The final will be about 1 and a half times longer than the past exams. As before there will be definitions, True/False problems, some short proofs and some computation problems. There will be more True/False problems but this time you do not have to give your reasoning.

Definitions/terminology from recent material.

If u, v are vectors in \mathbb{R}^n , what is their inner product or dot product, $v \cdot u$? How does one compute ||v||? What is the distance between u and v? Be familiar with the "algebraic" properties of inner products (they are listed in your text; e.g. $u \cdot (v_1 + v_2) = u \cdot v_1 + u \cdot v_2$.) What is meant by an orthogonal set of vectors? an orthonormal set of vectors? What does it mean to say that a vector v is orthogonal to the subspace W? What is meant by an orthogonal basis for a subspace W? Define the orthogonal projection $Proj_W(v) = \hat{v}$ of a vector v onto a subspace W. Be able to give a formula for this projection when an orthogonal basis $u_1, u_2, \cdots u_m$ of W is given. Understand how to carry out the Understand the Gram-Schmidt process of constructing an orthogonal basis. so-called QR decomposition of a matrix A. If the columns of A are independent, the Gram-Schmidt process yields an orthogonal (and even orthonormal) basis whose vectors form the columns of a matrix Q with $Q^T Q = I_m$ (what is m?) Remember that $R = Q^T A$ is upper triangular (this is a good check that you have carried out Gram-Schmidt correctly). If U is an $m \times n$ matrix with orthonormal columns, review the properties of U: e.g. $U^T U = I_n$, ||Uv|| = ||v||for all vectors v in \mathbb{R}^n , $Uv \cdot Uw = v \cdot w$. U is said to be an orthogonal matrix.

True-False questions: If $\{v_1, v_2, v_3\}$ is an orthogonal set and if c_1, c_2, c_3 are scalars, then $\{c_1v_1, c_2v_2, c_3v_3\}$ is an orthogonal set. If $||u - v||^2 =$ $||u||^2 + ||v||^2$, then u and v are orthogonal. Every orthogonal set in \mathbb{R}^n is linearly independent. For an $m \times n$ matrix A, vectors in the NulA are orthogonal to vectors in ColA. If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $x \mapsto Ax$ preserves lengths. Let $W = Span\{v_1, \dots, v_p\}$. Then x is in W^{\perp} if and only if x is orthogonal to every $v_i, 1 \leq i \leq p$. If W is a subspace of \mathbb{R}^n then the intersection of W and W^{\perp} is empty. If $y = z_1 + z_2$, where z_1 is in a subspace W and z_2 is in W^{\perp} , then z_1 must be the orthogonal projection of y onto W. If a square matrix has orthonormal columns, then it also has orthonormal rows. If an $n \times n$ matrix P has orthogonal columns, then $P^T = P^{-1}$.

If U is $m \times n$ with orthogonal columns, then $UU^T x$ is the orthogonal projection of x onto ColU. The orthogonal projection of y onto u is a scalar multiple of y. If the orthogonal projection of a vector y onto a subspace W is zero, then y is in W^{\perp} .

Let U be an $n \times n$ orthogonal matrix. Show that if $\{v_1, \dots, v_n\}$ is an orthonormal basis for \mathbb{R}^n , then so is $\{Uv_1, \dots, Uv_n\}$.

Show that if an $n \times n$ matrix U satisfies $(Ux) \cdot (Uy) = x \cdot y$ for all x and y in \mathbb{R}^n , then U is an orthogonal matrix.

Given a vector v, show that the set $\{x \in \mathbb{R}^n \mid x \cdot v = 0\}$ form a subspace of \mathbb{R}^n .

Let V be the subspace of R^3 spanned by the vectors $v_1 = 1$ 1 1, $v_2 = 1$ -22, $v_3 = 1$ -53. Find the dimension of the subspace V of R^3 spanned by the vectors. Find a basis for the orthogonal space V^{\perp} of V. For what values of $c = c_1$ c_2 c_3 does the following system of equations have a solution? x 1 1 1 +y 1-2 2 + z 1-5 $3\ =\ c_1$ c_2 c_3 If the equation is consistent, how many solutions are there? Consider the vectors $\mathbf{x_1} = 1$ $\mathbf{2}$ $1, \mathbf{x_2} = 1$ 1 0, and $x_3 = 0$ $\mathbf{2}$ 2. Let $W = Span\{\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}\}$. Compute dim W, and find a basis for W. Use the Gram-Schmidt process to find an *orthogonal* basis for the subspace W. Let $\mathbf{v_1} = 1$ 1 0 $0,\,\mathbf{v_2}=1$ -11 1 and $v_3 = 0$ 0 1

-1.Show that $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is an orthogonal set. Let $W = Span\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$. Compute dim W. Let $\mathbf{x} = -1$ -1 $\mathbf{2}$ - 2. Compute the orthogonal projection $\hat{\mathbf{x}} = Proj_W(\mathbf{x})$. Let V be the subspace of R^3 spanned by the vectors $v_1 = 1$ 1 1, $v_2 = 1$ 22, $v_3 = 1$ 3 3. Find a basis for the orthogonal space V^{\perp} of V. Consider the vector equation x_1 1 1 + y122 + z13 $3 = c_1$ c_2 c_3 . For what values of $\mathbf{c} = c_1$ c_2 c_3 does the system have a solution $\mathbf{x} = x$ yz?If the above equation has at least one solution \mathbf{x} , how many solutions does it have? The best quadratic function $f(x) = c + dx + ex^2$ to fit the points (-1, 1), (0, 1), (1, 0)and (2,2) is obtained using the formula $A^T A \hat{x} = A^T \vec{b}$. Find the matrix A and the vector \vec{b} . Solve for \hat{x} . Find an orthonormal basis for C(A) where -1663 - 831 - 26

1-4-3 . Find the QR decomposition of A.

Find all the least square solutions where A = 1224 -1-2and b = 32

1.