MATH 221 Solutions to the sample final

2 (a) True. Ciﬁi : Cj??j =0iff ¢ 7é j

(b). True. This is the Pythagorean theorem. For an argument, note that
|7 — @||?> = ||5]|? + ||#]|> — 21 - ¥. Hence the assumption forces @ - 7 = 0 so that @
and U are orthogonal.

(¢). False. This is not true since the 0 vector is orthogonal to any vector. For
an example, note that {(1,0),(0,0)} is an orthogonal subset of R%. Otherwise this
is true if we consider non-zero orthogonal vectors; this is a theorem from class.

(d). False. Let A= [1 0] so Aisa 1x2 matrix. The Nullspace of A is spanned
by (0,1) while the column space is a subspace of R!. What is true is that the
orthogonal complement of the row space of A is the nullspace of A.

(e). True. A theorem from class.

(f). True. If ¥ is in W+ then & is orthogonal to every vector in W and hence
the U;-s. If Z is orthogonal to the 17}5 then Z is orthogonal to linear combinations
of the 1793 and hence every vector in W.

(g). True. Suppose that a vector  is in W and WPerp. Then o - @ = 0 implies
||@|| = 0 which implies & = 0 (since vectors of zero length are zero).

(h). True by uniqueness of orthogonal projection (a theorem from class).

(i). True. If (AT)A = I, then A is invertible and A=! = AT. Thus AA~! =
AAT = I, which means that the columns of A” are orthonormal and hence the
rows of A are orthonormal.

(j). False. P = [ has orthogonal columns, but P~1 is not equal to PT.
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(k). True. A theorem from class.

(1) False. Let ¥ = (1,1) and @ = (0,1) Then projs,.u ) (%) = @ and  is not a
multiple of ¥.

(m) True by uniqueness of orthogonal decomposition.

3) If i # j then ¥; - U; = 0. Since U is orthogonal, the corresponding linear trans-
formation preserves the dot product (angles), thus (U%;) - (U¥;) = ;- U; = 0. Thus
the set {Uv1, Uy, ...,Ut,} is orthogonal. To see that this set is orthonormal, the
same argument as above shows that ||U%;||? = (U%;)- (U%;) = 0;-0; = ||]|> = 1 (or
just notice that the linear transformation associated with U also preserves lengths).

4) Take ¥ = &;. Then UZ is the i*® column of U. Take 7 = ej, so that Uy
is the jth column of U. Write @; for the i*" column of U for i = 1,...,n. Then
;- i; = (Uz)- (Uy) =& -§ =€ €. Thus @; - 4; is zero if i # j and is 1 if ¢ = j.
This means the columns of U are orthonormal, and hence that (UT)U = I so that
v-l=vu"T.

5) Suppose that & and § are each orthogonal to the given vector ¥, and suppose
that ¢ and d are scalars. To show that ¢ + dy is in the subspace, one needs to see
that cvecx+dy is orthogonal to v. Well, (cZ4dy)-0 = ¢(Z-0)+d(§-0) = ¢-0+d-0 =0
since - ¥ = ¢ - U = 0. This shows that {Z : & - ¥ = 0} is a subspace.

6) a) Let A be the matrix with columns ¢, ¥5,73. One finds that A has two
pivots, in the first two columns. So colomn space of A has dimension 2.
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b) Note that V is spanned by @7 and ¢5. A vector & = (a,b,c) is orthogonal
11 1], =
1 —2 2770
So we are reduced to finding the Null s%ace of the above 2x3 matrix. The reduced
0o 4

01 _31} So V* is spanned by (—3%,1,1) or by
3

to V iff # is orthogonal to @, and to #y. Thus, # is in V* iff

echelon form of this matrix is {

(—4,3,1).

c¢) ¢isin V iff ¢is equal to its orthogonal projection onto V. Since the orthogo-
nal complement of V is spanned by a single vector, ¢ is in V iff ¢ is orthogonal to
(—4,3,1). Thus the condition is that —4¢y + ¢22 4 3¢z = 0. If there is a particular
solution p'= (x,y, z), then g+ ¢ is also a solution for any vector ¢ in the Nullspace
of A. Since the nullspace of A is 1 dimensional there are infinitely many solutions
in this case.

(7) (a) The matrix formed by the 3 vectors may be row reduced:

1 1 0 1 1 0 1 0 2
21 2]~(0 -1 2]~1]0 -1 2
1 0 2 0 -1 2 0 0 0

hence the dimension of the column space is 2 and is actually spanned by the vetcors
x1 = (1,2,1)7 and x5 = (1,1,0). (b) To find an orthogonal basis u, us with the
same span we may take u; = x; and

. 1
W = x5 — 2%y = (1,1,007 — =(1,2,1)7 = (1/2,0,-1/2)7.
X1.X1 2
(8) (a) It is clear that vi.vo = vi.vz = va.vy = 0. (b) an orthogonal set is

necessarily linearly independent so the dimension of the span W of these 3 vectors
is 3, by the definition of dimension. (c) the projection of a vector x to the space
W is given by
X. Vi X.Va X.V3
v

projyyx = v+

9 vy = —vi +2vy = (—1,-1,2,-2)T.
V1.V V9.Vo V3.V3

(9) (a) The matrix formed by the 3 vectors (as row vectors) can be row reduced to

1 1 1 1 1 1 1 0 0
A=(1 2 2| ~|0 1 1|~(0 1 1
1 3 3 0 2 2 0 0 0

The null space V* is spanned by the vector (0,1, —1)7. (b) The matrix formed by
the 3 vectors (as column vectors) can be row reduced to

1 11 1 11 1 0 -1
A=1|1 2 3| ~[0 1 2|~]0 1 1
1 2 3 0 00 0 0 0

the equation Ax = ¢ = (cy, ¢, c3)” is consistent if and only if c is a linear combi-
nation of the vectors u; = (1,1,1),us = (1,2,2), i. e.,

cg=a+bco=a+2bcs=a+2babeR.

(c) infinitely many.



(10) The points are (—1,1),(0,1),(1,0),(2,2),
1 -1 1 1
1 0 0 1
A=1, 1 {|:P= ol
1 2 4 2
1
1 1 1 1 L1111y [ 4
AT=-1 0 1 2|,A4"™=[-1 0 1 ol =13]:
1 0 1 4 1o 1 4/, 9
1 1 1 1 } _01 é 4 2 6
ATA:—1012111:268
Lo 4/\y 5 6 8 18
To find x row reduce the augmented matrix,
4 2 6 4
2 6 8 3
6 8 18 9

(11) The vectors are vi = (—1,3,1,1), vy = (6, -8, -2, —4),vs = (6, 3,6, —3). First
find an orthogonal basis uj, us, uz with u; = vy,

uy = (6,—8,-2,—4) +3(—1,3,1,1) = (3,1,1,—1)

1 5
us = (6,3,6,-3) — 5(~1,3,1,1) = 5(3,1,1, 1) = (=1, -1,3,-1).

Then normalize these vectors:
up U us

,Wo = , W3 = .
23 0 23 0T 23

Now form a matrix @ with wi, wo, w3 as column vectors:

Wi =

-1 3 -1
1 3 1 -1
Q: —_—
2v/3 | 1 1 3
1 -1 -1

Then R = QT A where A is the matrix formed by taking the 3 original vectors
V1, Vs, V3 as column vectors:

-1 6 6

3 -8 3

A=11 2 &6

1 -4 -3
14311_317682 1 (12 =36 6
R=—— |3 1 1 —1)|] 0 o|=-2[0 12 30
2V3\1 -1 3 -1 L 4 s 23 o 0 12
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(12) First compute

then solve the equation AT Ax = ATb

ol

hence 1 = 1,25 = 0.
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