MATH 221 Solutions to the sample final

2 (a). True. $c_{i} \vec{v}_{i} \cdot c_{j} \vec{v}_{j}=0$ iff $i \neq j$.
(b). True. This is the Pythagorean theorem. For an argument, note that $\|\vec{v}-\vec{u}\|^{2}=\|\vec{v}\|^{2}+\|\vec{u}\|^{2}-2 \vec{u} \cdot \vec{v}$. Hence the assumption forces $\vec{u} \cdot \vec{v}=0$ so that \vec{u} and \vec{v} are orthogonal.
(c). False. This is not true since the $\overrightarrow{0}$ vector is orthogonal to any vector. For an example, note that $\{(1,0),(0,0)\}$ is an orthogonal subset of \mathbb{R}^{2}. Otherwise this is true if we consider non-zero orthogonal vectors; this is a theorem from class.
(d). False. Let $A=\left[\begin{array}{ll}1 & 0\end{array}\right]$ so A is a 1×2 matrix. The Nullspace of A is spanned by $(0,1)$ while the column space is a subspace of \mathbb{R}^{1}. What is true is that the orthogonal complement of the row space of A is the nullspace of A.
(e). True. A theorem from class.
(f). True. If \vec{x} is in W^{\perp} then \vec{x} is orthogonal to every vector in W and hence the $\vec{v}_{j}^{\prime} s$. If \vec{x} is orthogonal to the $\vec{v}_{j}^{\prime} s$ then \vec{x} is orthogonal to linear combinations of the $\vec{v}_{j}^{\prime} s$ and hence every vector in W.
(g). True. Suppose that a vector \vec{w} is in W and $W^{p} \operatorname{erp}$. Then $\vec{w} \cdot \vec{w}=0$ implies $\|\vec{w}\|=0$ which implies $\vec{w}=0$ (since vectors of zero length are zero).
(h). True by uniqueness of orthogonal projection (a theorem from class).
(i). True. If $\left(A^{T}\right) A=I$, then A is invertible and $A^{-1}=A^{T}$. Thus $A A^{-1}=$ $A A^{T}=I$, which means that the columns of A^{T} are orthonormal and hence the rows of A are orthonormal.
(j). False. $P=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ has orthogonal columns, but $P^{-} 1$ is not equal to P^{T}.
(k). True. A theorem from class.
(l) False. Let $\vec{y}=(1,1)$ and $\vec{u}=(0,1)$ Then $\operatorname{proj}_{\operatorname{span}(\vec{u})}(\vec{y})=\vec{u}$ and \vec{u} is not a multiple of \vec{y}.
(m) True by uniqueness of orthogonal decomposition.
3) If $i \neq j$ then $\vec{v}_{i} \cdot \vec{v}_{j}=0$. Since U is orthogonal, the corresponding linear transformation preserves the dot product (angles), thus $\left(U \vec{v}_{i}\right) \cdot\left(U \vec{v}_{j}\right)=\vec{v}_{i} \cdot \vec{v}_{j}=0$. Thus the set $\left\{U \vec{v}_{1}, U \vec{v}_{2}, \ldots, U \vec{v}_{n}\right\}$ is orthogonal. To see that this set is orthonormal, the same argument as above shows that $\left\|U \vec{v}_{i}\right\|^{2}=\left(U \vec{v}_{i}\right) \cdot\left(U \vec{v}_{i}\right)=\vec{v}_{i} \cdot \vec{v}_{i}=\left\|\vec{v}_{i}\right\|^{2}=1$ (or just notice that the linear transformation associated with U also preserves lengths).
4) Take $\vec{x}=\vec{e}_{i}$. Then $U \vec{x}$ is the $i^{\text {th }}$ column of U. Take $\vec{y}=e_{j}$, so that $U \vec{y}$ is the j th column of U. Write \vec{u}_{i} for the $i^{\text {th }}$ column of U for $i=1, \ldots, n$. Then $\vec{u}_{i} \cdot \vec{u}_{j}=(U x) \cdot(U \vec{y})=\vec{x} \cdot \vec{y}=\vec{e}_{i} \cdot \vec{e}_{j}$. Thus $\vec{u}_{i} \cdot \vec{u}_{j}$ is zero if $i \neq j$ and is 1 if $i=j$. This means the columns of U are orthonormal, and hence that $\left(U^{T}\right) U=I$ so that $U^{-1}=U^{T}$.
5) Suppose that \vec{x} and \vec{y} are each orthogonal to the given vector \vec{v}, and suppose that c and d are scalars. To show that $c \vec{x}+d \vec{y}$ is in the subspace, one needs to see that $c v e c x+d \vec{y}$ is orthogonal to \vec{v}. Well, $(c \vec{x}+d \vec{y}) \cdot \vec{v}=c(\vec{x} \cdot \vec{v})+d(\vec{y} \cdot \vec{v})=c \cdot 0+d \cdot 0=0$ since $\vec{x} \cdot \vec{v}=\vec{y} \cdot \vec{v}=0$. This shows that $\{\vec{x}: \vec{x} \cdot \vec{v}=0\}$ is a subspace.
6) a) Let A be the matrix with columns $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. One finds that A has two pivots, in the first two columns. So colomn space of A has dimension 2.
b) Note that V is spanned by \vec{v}_{1} and \vec{v}_{2}. A vector $\vec{x}=(a, b, c)$ is orthogonal to V iff \vec{x} is orthogonal to \vec{v}_{1} and to \vec{v}_{2}. Thus, \vec{x} is in V^{\perp} iff $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -2\end{array}\right] \vec{x}=\overrightarrow{0}$ So we are reduced to finding the Null space of the above 2 x 3 matrix. The reduced echelon form of this matrix is $\left[\begin{array}{ccc}1 & 0 & \frac{4}{3} \\ 0 & 1 & \frac{-1}{3}\end{array}\right]$. So V^{\perp} is spanned by $\left(-\frac{4}{3}, \frac{1}{3}, 1\right)$ or by $(-4,3,1)$.
c) \vec{c} is in V iff \vec{c} is equal to its orthogonal projection onto V. Since the orthogonal complement of V is spanned by a single vector, \vec{c} is in V iff \vec{c} is orthogonal to $(-4,3,1)$. Thus the condition is that $-4 c_{1}+c_{2} 2+3 c_{3}=0$. If there is a particular solution $\vec{p}=(x, y, z)$, then $\vec{p}+\vec{v}$ is also a solution for any vector \vec{v} in the Nullspace of A. Since the nullspace of A is 1 dimensional there are infinitely many solutions in this case.
(7) (a) The matrix formed by the 3 vectors may be row reduced:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 1 & 2 \\
1 & 0 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 2 \\
0 & -1 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

hence the dimension of the column space is 2 and is actually spanned by the vetcors $\mathbf{x}_{1}=(1,2,1)^{T}$ and $\mathbf{x}_{2}=(1,1,0)^{T}$. (b) To find an orthogonal basis $\mathbf{u}_{1}, \mathbf{u}_{2}$ with the same span we may take $\mathbf{u}_{1}=\mathbf{x}_{1}$ and

$$
\mathbf{u}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{x}_{1}}{\mathbf{x}_{1} \cdot \mathbf{x}_{1}} \mathbf{x}_{1}=(1,1,0)^{T}-\frac{1}{2}(1,2,1)^{T}=(1 / 2,0,-1 / 2)^{T} .
$$

(8) (a) It is clear that $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=\mathbf{v}_{1} \cdot \mathbf{v}_{3}=\mathbf{v}_{2} \cdot \mathbf{v}_{3}=0$. (b) an orthogonal set is necessarily linearly independent so the dimension of the span W of these 3 vectors is 3 , by the definition of dimension. (c) the projection of a vector \mathbf{x} to the space W is given by

$$
\operatorname{proj}_{W} \mathbf{x}=\frac{\mathbf{x} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{x} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}+\frac{\mathbf{x} \cdot \mathbf{v}_{3}}{\mathbf{v}_{3} \cdot \mathbf{v}_{3}} \mathbf{v}_{3}=-\mathbf{v}_{1}+2 \mathbf{v}_{3}=(-1,-1,2,-2)^{T} .
$$

(9) (a) The matrix formed by the 3 vectors (as row vectors) can be row reduced to

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 3 & 3
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

The null space V^{\perp} is spanned by the vector $(0,1,-1)^{T}$. (b) The matrix formed by the 3 vectors (as column vectors) can be row reduced to

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

the equation $A \mathbf{x}=\mathbf{c}=\left(c_{1}, c_{2}, c_{3}\right)^{T}$ is consistent if and only if \mathbf{c} is a linear combination of the vectors $\mathbf{u}_{1}=(1,1,1), \mathbf{u}_{2}=(1,2,2)$, i. e.,

$$
c_{1}=a+b, c_{2}=a+2 b, c_{3}=a+2 b, a, b \in \mathbf{R}
$$

(c) infinitely many.
(10) The points are $(-1,1),(0,1),(1,0),(2,2)$,

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right), \mathbf{b}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right), \\
A^{T}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2 \\
1 & 0 & 1 & 4
\end{array}\right), A^{T} \mathbf{b}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2 \\
1 & 0 & 1 & 4
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{l}
4 \\
3 \\
9
\end{array}\right), \\
A^{T} A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2 \\
1 & 0 & 1 & 4
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right)=\left(\begin{array}{ccc}
4 & 2 & 6 \\
2 & 6 & 8 \\
6 & 8 & 18
\end{array}\right)
\end{gathered}
$$

To find $\hat{\mathbf{x}}$ row reduce the augmented matrix,

$$
\left(\begin{array}{cccc}
4 & 2 & 6 & 4 \\
2 & 6 & 8 & 3 \\
6 & 8 & 18 & 9
\end{array}\right)
$$

(11) The vectors are $\mathbf{v}_{1}=(-1,3,1,1), \mathbf{v}_{2}=(6,-8,-2,-4), \mathbf{v}_{3}=(6,3,6,-3)$. First find an orthogonal basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ with $\mathbf{u}_{1}=\mathbf{v}_{1}$,

$$
\begin{gathered}
\mathbf{u}_{2}=(6,-8,-2,-4)+3(-1,3,1,1)=(3,1,1,-1) \\
\mathbf{u}_{3}=(6,3,6,-3)-\frac{1}{2}(-1,3,1,1)-\frac{5}{2}(3,1,1,-1)=(-1,-1,3,-1) .
\end{gathered}
$$

Then normalize these vectors:

$$
\mathbf{w}_{1}=\frac{\mathbf{u}_{1}}{2 \sqrt{3}}, \mathbf{w}_{2}=\frac{\mathbf{u}_{2}}{2 \sqrt{3}}, \mathbf{w}_{3}=\frac{\mathbf{u}_{3}}{2 \sqrt{3}} .
$$

Now form a matrix Q with $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$ as column vectors:

$$
Q=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccc}
-1 & 3 & -1 \\
3 & 1 & -1 \\
1 & 1 & 3 \\
1 & -1 & -1
\end{array}\right)
$$

Then $R=Q^{T} A$ where A is the matrix formed by taking the 3 original vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ as column vectors:

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
-1 & 6 & 6 \\
3 & -8 & 3 \\
1 & -2 & 6 \\
1 & -4 & -3
\end{array}\right) \\
R=\frac{1}{2 \sqrt{3}}\left(\begin{array}{cccc}
-1 & 3 & 1 & 1 \\
3 & 1 & 1 & -1 \\
-1 & -1 & 3 & -1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 6 & 6 \\
3 & -8 & 3 \\
1 & -2 & 6 \\
1 & -4 & -3
\end{array}\right)=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccc}
12 & -36 & 6 \\
0 & 12 & 30 \\
0 & 0 & 12
\end{array}\right) .
\end{gathered}
$$

4
(12) First compute

$$
\begin{gathered}
A^{T} A=\left(\begin{array}{lll}
1 & 2 & -1 \\
2 & 4 & -2
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
2 & 4 \\
-1 & -2
\end{array}\right)=\left(\begin{array}{cc}
6 & 12 \\
12 & 24
\end{array}\right) \\
A^{T} \mathbf{b}=\left(\begin{array}{lll}
1 & 2 & -1 \\
2 & 4 & -2
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)=\binom{6}{12}
\end{gathered}
$$

then solve the equation $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$

$$
\left(\begin{array}{cc}
6 & 12 \\
12 & 24
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{6}{12}
$$

hence $x_{1}=1, x_{2}=0$.

