
MATH 221 Solutions to the sample final

2 (a). True. ci~vi · cj~vj = 0 iff i 6= j.
(b). True. This is the Pythagorean theorem. For an argument, note that

||~v − ~u||2 = ||~v||2 + ||~u||2 − 2~u · ~v. Hence the assumption forces ~u · ~v = 0 so that ~u
and ~v are orthogonal.

(c). False. This is not true since the ~0 vector is orthogonal to any vector. For
an example, note that {(1, 0), (0, 0)} is an orthogonal subset of R2. Otherwise this
is true if we consider non-zero orthogonal vectors; this is a theorem from class.

(d). False. Let A =
[
1 0

]
so A is a 1×2 matrix. The Nullspace of A is spanned

by (0, 1) while the column space is a subspace of R1. What is true is that the
orthogonal complement of the row space of A is the nullspace of A.

(e). True. A theorem from class.
(f). True. If ~x is in W⊥ then ~x is orthogonal to every vector in W and hence

the ~v′js. If ~x is orthogonal to the ~v′js then ~x is orthogonal to linear combinations
of the ~v′js and hence every vector in W .

(g). True. Suppose that a vector ~w is in W and W perp. Then ~w · ~w = 0 implies
||~w|| = 0 which implies ~w = 0 (since vectors of zero length are zero).

(h). True by uniqueness of orthogonal projection (a theorem from class).
(i). True. If (AT )A = I, then A is invertible and A−1 = AT . Thus AA−1 =

AAT = I, which means that the columns of AT are orthonormal and hence the
rows of A are orthonormal.

(j). False. P =
[
2 0
0 1

]
has orthogonal columns, but P−1 is not equal to PT .

(k). True. A theorem from class.
(l) False. Let ~y = (1, 1) and ~u = (0, 1) Then projspan(~u)(~y) = ~u and ~u is not a

multiple of ~y.
(m) True by uniqueness of orthogonal decomposition.

3) If i 6= j then ~vi ·~vj = 0. Since U is orthogonal, the corresponding linear trans-
formation preserves the dot product (angles), thus (U~vi) · (U~vj) = ~vi ·~vj = 0. Thus
the set {U~v1, U~v2, . . . , U~vn} is orthogonal. To see that this set is orthonormal, the
same argument as above shows that ||U~vi||2 = (U~vi) ·(U~vi) = ~vi ·~vi = ||~vi||2 = 1 (or
just notice that the linear transformation associated with U also preserves lengths).

4) Take ~x = ~ei. Then U~x is the ith column of U . Take ~y = ej , so that U~y
is the jth column of U . Write ~ui for the ith column of U for i = 1, . . . , n. Then
~ui · ~uj = (Ux) · (U~y) = ~x · ~y = ~ei · ~ej . Thus ~ui · ~uj is zero if i 6= j and is 1 if i = j.
This means the columns of U are orthonormal, and hence that (UT )U = I so that
U−1 = UT .

5) Suppose that ~x and ~y are each orthogonal to the given vector ~v, and suppose
that c and d are scalars. To show that c~x + d~y is in the subspace, one needs to see
that cvecx+d~y is orthogonal to ~v. Well, (c~x+d~y)·~v = c(~x·~v)+d(~y·~v) = c·0+d·0 = 0
since ~x · ~v = ~y · ~v = 0. This shows that {~x : ~x · ~v = 0} is a subspace.

6) a) Let A be the matrix with columns ~v1, ~v2, ~v3. One finds that A has two
pivots, in the first two columns. So colomn space of A has dimension 2.
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b) Note that V is spanned by ~v1 and ~v2. A vector ~x = (a, b, c) is orthogonal

to V iff ~x is orthogonal to ~v1 and to ~v2. Thus, ~x is in V ⊥ iff
[
1 1 1
1 −2 −2

]
~x = ~0

So we are reduced to finding the Null space of the above 2x3 matrix. The reduced

echelon form of this matrix is
[
1 0 4

3
0 1 −1

3

]
. So V ⊥ is spanned by (− 4

3 , 1
3 , 1) or by

(−4, 3, 1).
c) ~c is in V iff ~c is equal to its orthogonal projection onto V . Since the orthogo-

nal complement of V is spanned by a single vector, ~c is in V iff ~c is orthogonal to
(−4, 3, 1). Thus the condition is that −4c1 + c22 + 3c3 = 0. If there is a particular
solution ~p = (x, y, z), then ~p +~v is also a solution for any vector ~v in the Nullspace
of A. Since the nullspace of A is 1 dimensional there are infinitely many solutions
in this case.

(7) (a) The matrix formed by the 3 vectors may be row reduced:1 1 0
2 1 2
1 0 2

 ∼

1 1 0
0 −1 2
0 −1 2

 ∼

1 0 2
0 −1 2
0 0 0


hence the dimension of the column space is 2 and is actually spanned by the vetcors
x1 = (1, 2, 1)T and x2 = (1, 1, 0)T . (b) To find an orthogonal basis u1,u2 with the
same span we may take u1 = x1 and

u2 = x2 −
x2.x1

x1.x1
x1 = (1, 1, 0)T − 1

2
(1, 2, 1)T = (1/2, 0,−1/2)T .

(8) (a) It is clear that v1.v2 = v1.v3 = v2.v3 = 0. (b) an orthogonal set is
necessarily linearly independent so the dimension of the span W of these 3 vectors
is 3, by the definition of dimension. (c) the projection of a vector x to the space
W is given by

projW x =
x.v1

v1.v1
v1 +

x.v2

v2.v2
v2 +

x.v3

v3.v3
v3 = −v1 + 2v3 = (−1,−1, 2,−2)T .

(9) (a) The matrix formed by the 3 vectors (as row vectors) can be row reduced to

A =

1 1 1
1 2 2
1 3 3

 ∼

1 1 1
0 1 1
0 2 2

 ∼

1 0 0
0 1 1
0 0 0

 .

The null space V ⊥ is spanned by the vector (0, 1,−1)T . (b) The matrix formed by
the 3 vectors (as column vectors) can be row reduced to

A =

1 1 1
1 2 3
1 2 3

 ∼

1 1 1
0 1 2
0 0 0

 ∼

1 0 −1
0 1 1
0 0 0

 .

the equation Ax = c = (c1, c2, c3)T is consistent if and only if c is a linear combi-
nation of the vectors u1 = (1, 1, 1),u2 = (1, 2, 2), i. e.,

c1 = a + b, c2 = a + 2b, c3 = a + 2b, a, b ∈ R.

(c) infinitely many.
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(10) The points are (−1, 1), (0, 1), (1, 0), (2, 2),

A =


1 −1 1
1 0 0
1 1 1
1 2 4

 , b =


1
1
0
2

 ,

AT =

 1 1 1 1
−1 0 1 2
1 0 1 4

 , AT b =

 1 1 1 1
−1 0 1 2
1 0 1 4




1
1
0
2

 =

4
3
9

 ,

AT A =

 1 1 1 1
−1 0 1 2
1 0 1 4




1 −1 1
1 0 0
1 1 1
1 2 4

 =

4 2 6
2 6 8
6 8 18

 .

To find x̂ row reduce the augmented matrix,4 2 6 4
2 6 8 3
6 8 18 9

 .

(11) The vectors are v1 = (−1, 3, 1, 1),v2 = (6,−8,−2,−4),v3 = (6, 3, 6,−3). First
find an orthogonal basis u1,u2,u3 with u1 = v1,

u2 = (6,−8,−2,−4) + 3(−1, 3, 1, 1) = (3, 1, 1,−1)

u3 = (6, 3, 6,−3)− 1
2
(−1, 3, 1, 1)− 5

2
(3, 1, 1,−1) = (−1,−1, 3,−1).

Then normalize these vectors:

w1 =
u1

2
√

3
,w2 =

u2

2
√

3
,w3 =

u3

2
√

3
.

Now form a matrix Q with w1,w2,w3 as column vectors:

Q =
1

2
√

3


−1 3 −1
3 1 −1
1 1 3
1 −1 −1


Then R = QT A where A is the matrix formed by taking the 3 original vectors
v1,v2,v3 as column vectors:

A =


−1 6 6
3 −8 3
1 −2 6
1 −4 −3



R =
1

2
√

3

−1 3 1 1
3 1 1 −1
−1 −1 3 −1



−1 6 6
3 −8 3
1 −2 6
1 −4 −3

 =
1

2
√

3

12 −36 6
0 12 30
0 0 12

 .
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(12) First compute

AT A =
(

1 2 −1
2 4 −2

)  1 2
2 4
−1 −2

 =
(

6 12
12 24

)

AT b =
(

1 2 −1
2 4 −2

) 3
2
1

 =
(

6
12

)
then solve the equation AT Ax = AT b(

6 12
12 24

) (
x1

x2

)
=

(
6
12

)
hence x1 = 1, x2 = 0.


