Math 221
Prof. Peter Cholak and Prof. Pit-Mann Wong

Name:
Wednesday, December 13

1. $(25 \mathrm{pts}-5$ each. $)$ Define the following notions:
(a). Linear independence.
(b). Orthogonal vectors.
(c). Orthogonal projection.
(d). Linear transformation.
(e). Least-square solution to $A \vec{x}=\vec{b}$.
2. (20pts - 2 each.) Mark each of the following True or False. There is no need to justify your answers.
(a) If 3 vectors span $\mathbb{R}^{3}$ then the vectors are linearly independent.
(b) If an $n \times n$-matrix $A$ is invertible then every $\vec{v} \in \mathbb{R}^{n}$ is in the column space of $A$.
(c) If $A$ is an $3 \times 4$-matrix then the columns of $A$ are linearly independent.
(d) The map $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(x-y+z, x(y+z))$ is a linear transformation.
(e) For all matrices $A, B, C$, if $A C=B C$ then $A=B$.
(f) $\operatorname{rank}(\mathrm{A})=\operatorname{dim} \operatorname{Nul}(\mathrm{A})+\operatorname{dim}$ column space of $A$.
(g) Let $A$ be an $n \times n$ matrix then $A$ is diagonalizable if it has $n$ eigenvalues.
(h) For any $m \times n$-matrix $A$ and any $\vec{b} \in \mathbb{R}^{n}$ the system $A^{T} A \vec{x}=A^{T} \vec{b}$ always has a solution.
(i) The orthogonal projection of $\vec{x}$ onto $V$ is orthogonal to $V$.
(j) If $\hat{x}$ is a least square solution to $A \vec{x}=\vec{b}$ then $\vec{b}-A \hat{x}$ is orthogonal to rowspace of $A$.
3. (20pts.) Find a basis for the column space, a basis for the row space, a basis for the null-space, the rank, and the dimension of the null-space of

$$
\left[\begin{array}{rrrr}
1 & -2 & 2 & -1 \\
-3 & 6 & 1 & 10 \\
1 & -2 & -4 & -7 \\
1 & -2 & 2 & 0
\end{array}\right]
$$

4. (10pts.) Let $A=\left[\begin{array}{rrrr}0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2\end{array}\right]$ and $\vec{b}=\left[\begin{array}{r}-4 \\ 7\end{array}\right]$.
(a). Find one solution to the linear equation $A \vec{x}=\vec{b}$.
(b). Find a basis for the nullspace of $A$.
(c). Using the above two parts find all the solutions to $A \vec{x}=\vec{b}$.
5. (15pts.) Let $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right]$.
(a). Show that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is a basis.
(b). Let $x=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]$. Find the coordinates of $\mathbf{x}$ with respect to the basis $\mathcal{B}$.
(c). Let $V$ be the subspace spanned by $\left\{\mathbf{b}_{2}, \mathbf{b}_{3}\right\}$. Find an orthonormal basis for $V$.
6. (15pts.) Find the least square solution to the system

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

7. (10pts.) Let $\mathbf{v}_{1}=\left(\frac{2}{3},-\frac{1}{3},-\frac{2}{3}\right), \mathbf{v}_{2}=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$.
(a). Show that $\mathbf{v}_{1}, \mathbf{v}_{2}$ is an orthonormal basis of the $\operatorname{span} W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
(b). Let $\mathbf{x}=(2,1,3)$ find the distance from $\mathbf{x}$ to $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
8. (15 pts.) Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ be the linear tranformation $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}, x_{3}-x_{4}\right)$.
(a). Find the matrix representing $T$ relative to the standard basis on $\mathbf{R}^{4}$ and the standard basis on $\mathbf{R}^{2}$.
(b). $\mathcal{B}=\{(1,1),(1,-1)\}$ is a basis of $\mathbf{R}^{2}$. Find the matrix representing $T$ relative to the standard basis on $\mathbf{R}^{4}$ and the basis $\mathcal{B}=\{(1,1),(1,-1)\}$ on $\mathbf{R}^{2}$.
9. (10pts.) Let $T$ be a linear transformation from $\mathbb{R}^{k}$ to $\mathbb{R}^{k}$. Show that the set of $\vec{v} \in \mathbb{R}^{k}$ such that $T(\vec{v})=4 \vec{v}$ is a subspace of $\mathbb{R}^{k}$.
10. (10pts.) Let $A$ be an $m \times n$ matrix with row vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ (so $A=\left[\begin{array}{c}\mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \vdots \\ \mathbf{v}_{m}\end{array}\right]$ ) and let $\mathbf{v}=$ $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}, \ldots+a_{n} \mathbf{v}_{m}$ be a linear combination of the row vectors. Show that if $\mathbf{v} \neq \mathbf{0}$ then $A \mathbf{v} \neq \mathbf{0}$.
