Prof. Peter Cholak and Prof. Pit-Mann Wong

Math~221

Math 221

Prof. Peter Cholak and Prof. Pit-Mann Wong

Name: ______ Wednesday, December 13

(25 pts - 5 each.) Define the following notions:
 (a). Linear independence.

(b). Orthogonal vectors.

(c). Orthogonal projection.

(d). Linear transformation.

(e). Least-square solution to $A\vec{x} = \vec{b}$.

2. (20pts - 2 each.) Mark each of the following True or False. There is no need to justify your answers.
(a) If 3 vectors span ℝ³ then the vectors are linearly independent.

- (b) If an $n \times n$ -matrix A is invertible then every $\vec{v} \in \mathbb{R}^n$ is in the column space of A.
- (c) If A is an 3×4 -matrix then the columns of A are linearly independent.
- (d) The map $T: \mathbf{R}^3 \to \mathbf{R}^2$ defined by T(x, y, z) = (x y + z, x(y + z)) is a linear transformation.
- (e) For all matrices A, B, C, if AC = BC then A = B.
- (f) $rank(A) = \dim Nul(A) + \dim column space of A.$
- (g) Let A be an $n \times n$ matrix then A is diagonalizable if it has n eigenvalues.
- (h) For any $m \times n$ -matrix A and any $\vec{b} \in \mathbb{R}^n$ the system $A^T A \vec{x} = A^T \vec{b}$ always has a solution.
- (i) The orthogonal projection of \vec{x} onto V is orthogonal to V.
- (j) If \hat{x} is a least square solution to $A\vec{x} = \vec{b}$ then $\vec{b} A\hat{x}$ is orthogonal to rowspace of A.

3. (20pts.) Find a basis for the column space, a basis for the row space, a basis for the null-space, the rank, and the dimension of the null-space of

- **4.** (10pts.) Let $A = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} -4 \\ 7 \end{bmatrix}$.
 - (a). Find one solution to the linear equation $A\vec{x} = \vec{b}$.
 - (b). Find a basis for the nullspace of A.
 - (c). Using the above two parts find *all* the solutions to $A\vec{x} = \vec{b}$.

- 5. (15pts.) Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$. (a). Show that $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is a basis.

 - (b). Let $x = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$. Find the coordinates of **x** with respect to the basis \mathcal{B} .
 - (c). Let V be the subspace spanned by $\{\mathbf{b}_2, \mathbf{b}_3\}$. Find an orthonormal basis for V.

6. (15pts.) Find the least square solution to the system

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

- 7. (10pts.) Let $\mathbf{v}_1 = (\frac{2}{3}, -\frac{1}{3}, -\frac{2}{3}), \mathbf{v}_2 = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}).$ (a). Show that $\mathbf{v}_1, \mathbf{v}_2$ is an orthonormal basis of the span $W = \text{span } \{\mathbf{v}_1, \mathbf{v}_2\}.$
 - (b). Let $\mathbf{x} = (2, 1, 3)$ find the distance from \mathbf{x} to $W = \text{span } \{\mathbf{v}_1, \mathbf{v}_2\}$.

8. (15 pts.) Let T: R⁴ → R² be the linear transformation T(x₁, x₂, x₃, x₄) = (x₁ + x₂, x₃ - x₄).
(a). Find the matrix representing T relative to the standard basis on R⁴ and the standard basis on R².

(b). $\mathcal{B} = \{(1,1), (1,-1)\}$ is a basis of \mathbb{R}^2 . Find the matrix representing T relative to the standard basis on \mathbb{R}^4 and the basis $\mathcal{B} = \{(1,1), (1,-1)\}$ on \mathbb{R}^2 .

9. (10pts.) Let T be a linear transformation from \mathbb{R}^k to \mathbb{R}^k . Show that the set of $\vec{v} \in \mathbb{R}^k$ such that $T(\vec{v}) = 4\vec{v}$ is a subspace of \mathbb{R}^k .

10. (10pts.) Let A be an $m \times n$ matrix with row vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ (so $A = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{bmatrix}$) and let $\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2, ... + a_n \mathbf{v}_m$ be a linear combination of the row vectors. Show that if $\mathbf{v} \neq \mathbf{0}$ then $A\mathbf{v} \neq \mathbf{0}$.