Consider the following system of linear equations:

$$
\begin{gathered}
2 x_{1}+4 x_{2}+6 x_{3}=6 \\
\mathrm{x}_{1}+3 x_{2}+4 x_{3}=4 \\
\mathrm{x}_{2}+a x_{3}=1
\end{gathered}
$$

(2 points) Find A and \vec{b} such that the above system in the form $A \vec{x}=\vec{b}$ (i.e. an matrix equation).

$$
A=246
$$

134
01a
and $\vec{b}=6$
4
1
(5 points) Explicitly showing all the steps row reduce the augmented matrix for the above system into echelon form.

The augmented matrix is $M=2466$
1344
$01 a 1$
. First lets divide the top row by 2 to get: 1233
1344
$01 a 1$
. Now multiple the top row by -1 and add to the second row to get 1233
0111
$01 a 1$
. Subtract the second row from the third row to get $N=1233$
0111
$00 a-10$
. This is now in echelon form.
(2 points) For which a does the augmented matrix have 3 pivots?
When $a \neq 1$.
(4 points) Explicitly showing all the steps reduce the augmented matrix into reduce echelon form. (Hint: there are 2 cases.) First lets assume $a \neq 1$. Then we can divide the last row by $a-1 \neq 0$ to get: 1233
0111
0010
. Then subtract 3 times the last row from the first row and the last row from the second row to get: 1203
0101
0010
. Now subtract 2 times the second from the first row to get: 1001
0101
0010
which is in reduce echelon form.
Now assume $a=1$. Hence $N=1233$

0111
0000
Subtract two times the second from the first row to get 1011
0111
0000
which is in reduce echelon form. (2 points) Is there an a such that the system does not have a solution? Why or why not?

No! It is never the case that the last column contains a pivot.
(5 points) Find the general solution to the above system (Hint: there are two cases).

There are two cases: either the reduce echelon from is 1001
0101
0010
or 1011
0111
0000
. In the first case, the general solution is $x_{1}=0, x_{2}=1$ and $x_{2}=1$ or $\vec{x}=1$
1
0
. In the second case, the general solution is $x_{1}=1-x_{3}, x_{2}=1-x_{3}$ and x_{3} is free. Another way to write this is: $\vec{x}=1-x_{3}$
$1-x_{3}$
x_{3}
$=1$
1
0
$+-x_{3}$
$-x_{3}$
x_{3}
$=1$
1
0
$+x_{3}-1$
-1
1

