Express the solutions of the equation $A \mathbf{x}=\mathbf{0}$ in parametric form, where

$$
A=1102-2-21-511-1344-19
$$

For what values of c are the vectors $\mathbf{v}_{1}=-1$
0
$-1, \mathbf{v}_{2}=2$
1
2 and $\mathbf{v}_{3}=1$
1
c (a) linearly independent? (b) linearly dependent?
Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are 3 linearly independent vectors show that the vectors $\mathbf{v}_{1}, \mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$ are also linearly independent.

Let S be a set of vectors and T be a subset of S. Are the following statements TRUE or FALSE. Be sure to a proof or a counterexample. If the vectors in S are linearly independent then the vectors in T are also linearly independent. If the vectors in S are linearly dependent then the vectors in T are also linearly dependent.

Is the absolute value function $T: \mathbf{R} \rightarrow \mathbf{R}, T(x)=|x|$ a linear transformation? Justify your answer.

