Express the solutions of the equation $A\mathbf{x} = \mathbf{0}$ in parametric form, where

$$A = 1102 - 2 - 21 - 511 - 1344 - 19$$

The reduce row echolon form of A is 1102 001 - 10000 0000. So x_1 and x_3 are basic variables and x_2 and x_4 are free variables. Hence the general solution is $x_2 - 1$ 1 0 $0 + x_4 - 2$ 0 1 1. For what values of c are the vectors $\mathbf{v}_1 = -1$ 0 $-1, \mathbf{v}_2 = 2$ 1 2 and $v_3 = 1$ 1 c (a) linearly independent? (b) linearly dependent?

We want to consider when the vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \mathbf{v}_3$ has solutions. $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \mathbf{v}_3$ has solutions iff \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are linearly dependent. For this we need to rowreduce the matrix -121

011

 $-\,12c.$ Subtract the first row from the third to get -121

011

00c - 1. c = 1 iff the last column does not has pivot iff vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \mathbf{v}_3$ has solutions iff \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are linearly dependent.

Suppose that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are 3 linearly independent vectors show that the vectors $\mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$ are also linearly independent.

 $c_1\mathbf{v}_1+c_2(\mathbf{v}_1+\mathbf{v}_2), (\mathbf{v}_1+c_3\mathbf{v}_2+\mathbf{v}_3) = \mathbf{0}$ iff $(c_1+c_2+c_3)\mathbf{v}_1+(c_2+c_3)\mathbf{v}_2+c_3\mathbf{v}_3) = \mathbf{0}$. Hence $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is linearly independent iff $\mathbf{v}_1, \mathbf{v}_1+\mathbf{v}_2, \mathbf{v}_1+\mathbf{v}_2+\mathbf{v}_3$ are linearly independent.

Let S be a set of vectors and T be a subset of S. Are the following statements TRUE or FALSE. Be sure to a proof or a counterexample. If the vectors in S are linearly independent then the vectors in T are also linearly independent. If the vectors in S are linearly dependent then the vectors in T are also linearly dependent.

(a) True. If there is a non-trivial linear combination of the vectors in T whose sum is the zero vector then the same is true for S. So if T is linearly dependent then so is S.

(b) False. $T = \{1$

0

0, 0 1 0, 0 0 1} and $S = T \cup \{1$ 1 1}. T is linearly independent but S is not.

Is the absolute value function $T : \mathbf{R} \to \mathbf{R}, T(x) = |x|$ a linear transformation? Justify your answer.

No. For example, $3 = |-3| \neq -1|3| = -3$.