Express the solutions of the equation $A \mathbf{x}=\mathbf{0}$ in parametric form, where

$$
A=1102-2-21-511-1344-19
$$

The reduce row echolon form of A is 1102
001-1
0000
0000. So x_{1} and x_{3} are basic variables and x_{2} and x_{4} are free variables. Hence the general solution is $x_{2}-1$
1
0
$0+x_{4}-2$
0
1
1.

For what values of c are the vectors $\mathbf{v}_{1}=-1$
0
$-1, \mathbf{v}_{2}=2$
1
2 and $\mathbf{v}_{3}=1$
1
c (a) linearly independent? (b) linearly dependent?
We want to consider when the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}=\mathbf{v}_{3}$ has solutions. $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}=\mathbf{v}_{3}$ has solutions iff $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent. For this we need to rowreduce the matrix -121
011
$-12 c$. Subtract the first row from the third to get -121
011
$00 c-1 . \quad c=1$ iff the last column does not has pivot iff vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}=\mathbf{v}_{3}$ has solutions iff $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent.

Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are 3 linearly independent vectors show that the vectors $\mathbf{v}_{1}, \mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$ are also linearly independent.
$c_{1} \mathbf{v}_{1}+c_{2}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right),\left(\mathbf{v}_{1}+c_{3} \mathbf{v}_{2}+\mathbf{v}_{3}\right)=\mathbf{0}$ iff $\left.\left(c_{1}+c_{2}+c_{3}\right) \mathbf{v}_{1}+\left(c_{2}+c_{3}\right) \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}\right)=$ $\mathbf{0}$. Hence $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is linearly independent iff $\mathbf{v}_{1}, \mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$ are linearly independent.

Let S be a set of vectors and T be a subset of S. Are the following statements TRUE or FALSE. Be sure to a proof or a counterexample. If the vectors in S are linearly independent then the vectors in T are also linearly independent. If the vectors in S are linearly dependent then the vectors in T are also linearly dependent.
(a) True. If there is a non-trivial linear combination of the vectors in T whose sum is the zero vector then the same is true for S. So if T is linearly dependent then so is S.
(b) False. $T=\{1$

0
$1\}$ and $S=T \cup\{1$

1
1\}. T is linearly independent but S is not.
Is the absolute value function $T: \mathbf{R} \rightarrow \mathbf{R}, T(x)=|x|$ a linear transformation? Justify your answer.

No. For example, $3=|-3| \neq-1|3|=-3$.

