Is $A=123$
134
$0-2-2$ invertible? If so find an inverse. Find all the solutions to $A \vec{x}=\vec{e}_{2}$.
The matrix 123100
134010
$0-2-2001$ row reduces to $10101 \frac{3}{2}$
$01100 \frac{1}{2}$
$0001-1-\frac{1}{2}$ so A is not invertible. From this we can also see that 1230
1341
$0-2-20$ row reduces to 1011
0110
$000-1$ which has a pivot in the last column and therefore $A \vec{x}=\vec{e}_{2}$ is not consistent (has no solutions).

$$
B=120
$$

$0 \frac{1}{2} 0$
103 is invertible. Write B and B^{-1} as the product of elementary matrices.
Since we know B is invertible we will reduce B to I keeping track of the elementary row operations. We will write this out as multiplication by elementary matrices.

$$
\begin{aligned}
100010-1011200 \frac{1}{2} 0103 & =1200 \frac{1}{2} 00-23 \\
1000200011200 \frac{1}{2} 00-23 & =1200100-23 \\
1000100211200100-23 & =120010003 \\
10001000 \frac{1}{3} 120010003 & =120010001 \\
120010001120010001 & =100010001
\end{aligned}
$$

Hence

$$
B^{-1}=12001000110001000 \frac{1}{3} 100010021100020001100010-101
$$

(You might have a slightly different order with slightly different matrices.) $\left(B^{-1}\right)^{-1}=B$, the inverse of an elementary matrix is also an elementary matrix and the inverse of $A C$ is $C^{-1} A^{-1}$ so

$$
B=100010-101^{-1} 100020001^{-1} 100010021^{-1} 10001000 \frac{1}{3}^{-1} 120010001^{-1}
$$

$$
B=1000101011000 \frac{1}{2} 00011000100-211000100031-20010001
$$

Assume that $A B$ exists. Show that if the columns of B are linearly dependent then the columns of $A B$ are also.
$A B=A \vec{b}_{1} \vec{b}_{2} \ldots \vec{b}_{n}=A \vec{b}_{1} A \vec{b}_{2} \ldots A \vec{b}_{n}$. The columns of B are linearly dependent iff there are c_{i} 's not all zero such that $c_{1} \vec{b}_{1}+c_{1} \vec{b}_{2} \ldots+c_{n} \vec{b}_{n}=0$. Then $A\left(c_{1} \vec{b}_{1}+c_{1} \vec{b}_{2} \ldots+c_{n} \vec{b}_{n}\right)=0$ and hence $A c_{1} \vec{b}_{1}+A c_{1} \vec{b}_{2} \ldots+A c_{n} \vec{b}_{n}=$ $c_{1} A \vec{b}_{1}+c_{1} A \vec{b}_{2} \ldots+c_{n} A \vec{b}_{n}=0$. Therefore the columns of $A B$ are linearly dependent.

Assume $A B$ exists. If A is invertible and $A B=0$ what is B ? Give an example where $A \neq 0$ and $B \neq 0$ but $A B=0$.

If A is invertible then we can multiple on the left by A^{-1} to get

$$
\begin{gathered}
A^{-1} A B=A 0 \\
I B=0 \\
B=0 .
\end{gathered}
$$

In our example neither A nor B can be invertible. Let $A=B=00$
10. $A B=00$

1000
$10=0$.
Find the determinant of $A=210-10$
$2-11-30$
$120-23$
02000
12230.

Start by taking the cofactor expansion across the fourth row. Only $a_{4,2}$ is nonzero, so $\operatorname{det}(A)=(2)(-1)^{4+2} \operatorname{det}\left(A_{4,2}\right)=(2) \operatorname{det}\left(A_{4,2}\right)$. Let $B=A_{4,2}=$ 20-10
21-30
10-23
1230. To take the determinant of B lets use the cofactor expansion down the last column. Only $b_{3,4}$ is nonzero, so $\operatorname{det}(B)=(3)(-1)^{3+4} \operatorname{det}\left(B_{3,4}\right)=-3 \operatorname{det}\left(B_{3,4}\right)$. $B_{3,4}=20-1$
21-3
123. $\operatorname{det}\left(B_{3,4}\right)=2 \operatorname{det}(1-3$
$23)+(-1) \operatorname{det}(21$
$12)=(2)(9)+(-1)(3)=15$. So $\operatorname{det}(A)=(2)(-3)(15)=-90$.

