Is
$$A = 123$$

134

0-2-2 invertible? If so find an inverse. Find all the solutions to $A\vec{x}=\vec{e}_2$.

The matrix 123100

134010

0-2-2001 row reduces to $10101\frac{3}{2}$

 $01100\frac{1}{2}$

 $0001 - 1 - \frac{1}{2}$ so A is not invertible. From this we can also see that 1230

1341

0-2-20 row reduces to 1011

0110

000-1 which has a pivot in the last column and therefore $A\vec{x}=\vec{e}_2$ is not consistent (has no solutions).

$$B = 120$$

 $0\frac{1}{2}0$

 $1\tilde{0}3$ is invertible. Write B and B^{-1} as the product of elementary matrices.

Since we know B is invertible we will reduce B to I keeping track of the elementary row operations. We will write this out as multiplication by elementary matrices.

$$100010 - 1011200\frac{1}{2}0103 = 1200\frac{1}{2}00 - 23$$

$$1000200011200\frac{1}{2}00 - 23 = 1200100 - 23$$

$$1000100211200100 - 23 = 120010003$$

$$10001000\frac{1}{3}120010003 = 120010001$$

$$120010001120010001 = 100010001$$

Hence

$$B^{-1} = 12001000110001000\frac{1}{3}100010021100020001100010 - 101$$

(You might have a slightly different order with slightly different matrices.) $(B^{-1})^{-1} = B$, the inverse of an elementary matrix is also an elementary matrix and the inverse of AC is $C^{-1}A^{-1}$ so

$$B = 100010 - 101^{-1}100020001^{-1}100010021^{-1}10001000\frac{1}{3}^{-1}120010001^{-1}$$

$$B = 1000101011000\frac{1}{2}00011000100 - 211000100031 - 20010001$$

Assume that AB exists. Show that if the columns of B are linearly dependent then the columns of AB are also.

 $AB = A\vec{b}_1\vec{b}_2\dots\vec{b}_n = A\vec{b}_1A\vec{b}_2\dots A\vec{b}_n$. The columns of B are linearly dependent iff there are c_i 's not all zero such that $c_1\vec{b}_1 + c_1\vec{b}_2\dots + c_n\vec{b}_n = 0$. Then $A(c_1\vec{b}_1 + c_1\vec{b}_2\dots + c_n\vec{b}_n) = 0$ and hence $Ac_1\vec{b}_1 + Ac_1\vec{b}_2\dots + Ac_n\vec{b}_n = c_1A\vec{b}_1 + c_1A\vec{b}_2\dots + c_nA\vec{b}_n = 0$. Therefore the columns of AB are linearly dependent.

Assume AB exists. If A is invertible and AB=0 what is B? Give an example where $A\neq 0$ and $B\neq 0$ but AB=0.

If A is invertible then we can multiple on the left by A^{-1} to get

$$A^{-1}AB = A0$$
$$IB = 0$$

$$B=0.$$

In our example neither A nor B can be invertible. Let A=B=00

10. AB = 00

1000

10 = 0.

Find the determinant of A = 210 - 10

2 - 11 - 30

120 - 23

02000

12230.

Start by taking the cofactor expansion across the fourth row. Only $a_{4,2}$ is nonzero, so $\det(A) = (2)(-1)^{4+2} \det(A_{4,2}) = (2) \det(A_{4,2})$. Let $B = A_{4,2} =$

20 - 10

21 - 30

10 - 23

1230. To take the determinant of B lets use the cofactor expansion down the last column. Only $b_{3,4}$ is nonzero, so $\det(B) = (3)(-1)^{3+4} \det(B_{3,4}) = -3 \det(B_{3,4})$.

 $B_{3,4} = 20 - 1$

21 - 3

123. $\det(B_{3,4}) = 2 \det(1-3)$

 $(23) + (-1) \det(21)$

(12) = (2)(9) + (-1)(3) = 15. So det(A) = (2)(-3)(15) = -90.