MATH 221 Linear Algebra Quiz IV

1. Let $V_{n}=\left\{a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n} \mid a_{i} \in \mathbf{R}, i=0, \ldots, n\right\}$ be the vector space of polynomials of degree at most n. The set $\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is a basis for V_{n} and is referred to as the standard basis. Consider the case $n=3$ and show that:
(a) the set $\mathcal{B}=\left\{1,(1-t),(1-t)^{2},(1-t)^{3}\right\}$ is also a basis of V_{3};
(b) what are the coordinates of the polynomial $1+t+t^{2}+t^{3}$ relative to the standard basis?
(c) a polynomial P has coordinates $[1,1,1,1]_{\mathcal{B}}$ relative to \mathcal{B} what are the coordinates of P relative to the standard basis?
(d) what are the coordinates of the polynomial $1+t+t^{2}+t^{3}$ relative to the basis \mathcal{B} given in (a)?
(e) the set $\mathcal{C}=\left\{1,(1+t),(1+t)^{2},(1+t)^{3}\right\}$ is also a basis for V_{3} what is the coordinates relative to \mathcal{C} of the polynomial $P=[1,1,1,1]_{\mathcal{B}}$ of part (c)?
2. Given a polynomial $P(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}$ of degree n then its derivative $P^{\prime}(t)=a_{1}+2 a_{2} t+\ldots+n a_{n} t^{n-1}$ is a polynomial of degree at most $n-1$. Consider the case $n=3$ and show that:
(a) the map $T: V_{3} \rightarrow V_{2}$ defined by $T(P(t))=P^{\prime}(t)$ is a linear transformation;
(b) write down the matrix A representating the transformation T relative to the standard bases for V_{3} and V_{2} ?
(c) what is the null space of the matrix A in (b)?
(d) what is the column space of the matrix A in (b)?
(e) verify the Rank Theorem by using your answers for (c) and (d).
