November 17, 2004

MATH 221 Linear Algebra Quiz IV

1. Let $V_n = \{a_0 + a_1t + a_2t^2 + ... + a_nt^n | a_i \in \mathbf{R}, i = 0, ..., n\}$ be the vector space of polynomials of degree at most n. The set $\{1, t, t^2, ..., t^n\}$ is a basis for V_n and is referred to as the standard basis. Consider the case n = 3 and show that:

(a) the set $\mathcal{B} = \{1, (1-t), (1-t)^2, (1-t)^3\}$ is also a basis of V_3 ;

(b) what are the coordinates of the polynomial $1 + t + t^2 + t^3$ relative to the standard basis?

(c) a polynomial P has coordinates $[1, 1, 1, 1]_{\mathcal{B}}$ relative to \mathcal{B} what are the coordinates of P relative to the standard basis?

(d) what are the coordinates of the polynomial $1 + t + t^2 + t^3$ relative to the basis \mathcal{B} given in (a)?

(e) the set $\mathcal{C} = \{1, (1+t), (1+t)^2, (1+t)^3\}$ is also a basis for V_3 what is the coordinates relative to \mathcal{C} of the polynomial $P = [1, 1, 1, 1]_{\mathcal{B}}$ of part (c)?

2. Given a polynomial $P(t) = a_0 + a_1t + a_2t^2 + ... + a_nt^n$ of degree *n* then its derivative $P'(t) = a_1 + 2a_2t + ... + na_nt^{n-1}$ is a polynomial of degree at most n-1. Consider the case n = 3 and show that:

(a) the map $T: V_3 \to V_2$ defined by T(P(t)) = P'(t) is a linear transformation;

(b) write down the matrix A representating the transformation T relative to the standard bases for V_3 and V_2 ?

(c) what is the null space of the matrix A in (b)?

(d) what is the column space of the matrix A in (b)?

(e) verify the Rank Theorem by using your answers for (c) and (d).