MATH 221 Quiz IV Solutions

1. Let $V_n = \{a_0 + a_1t + a_2t^2 + ... + a_nt^n | a_i \in \mathbf{R}, i = 0, ..., n\}$ be the vector space of polynomials of degree at most n. The set $\{1, t, t^2, ..., t^n\}$ is a basis for V_n and is referred to as the standard basis. Consider the case n = 3 and show that:

(a) the set $\mathcal{B} = \{1, (1-t), (1-t)^2, (1-t)^3\}$ is also a basis of V_3 ;

Solution: Suppose that $c_0 + c_1(1-t) + c_2(1-t)^2 + c_3(1-t)^3 = 0$ then setting t = 1 yields $c_0 = 0$ thus $c_1(1-t) + c_2(1-t)^2 + c_3(1-t)^3 = 0$. Factoring out the common factor (1-t) yields $c_1 + c_2(1-t) + c_3(1-t)^2 = 0$. Setting t = 1 again yields $c_1 = 0$ and hence $c_2(1-t) + c_3(1-t)^2 = 0$. Factoring out (1-t) gives $c_2 + c_3(1-t) = 0$ and setting t = 1 once more shows that $c_2 = 0$. We arrive at $c_3(1-t)^2 = 0$ which implies that $c_3 = 0$.

(b) what are the coordinates of the polynomial $1 + t + t^2 + t^3$ relative to the standard basis?

Solution: [1, 1, 1, 1].

(c) a polynomial P has coordinates $[1, 1, 1, 1]_{\mathcal{B}}$ relative to \mathcal{B} what are the coordinates of P relative to the standard basis?

Solution: $1 = [1, 0, 0, 0], 1-t = [1, -1, 0, 0], (1-t)^2 = 1-2t+t^2 = [1, -2, 1, 0], (1-t)^3 = 1 - 3t + 3t^2 - t^3 = [1, -3, 3, -1].$ Writing these as column vectors results in a matrix

$$P_{\mathcal{B}} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

and

$$P_{\mathcal{B}}\begin{pmatrix}1\\1\\1\\1\end{pmatrix}_{\mathcal{B}} = \begin{pmatrix}1 & 1 & 1 & 1\\0 & -1 & -2 & -3\\0 & 0 & 1 & 3\\0 & 0 & 0 & -1\end{pmatrix}\begin{pmatrix}1\\1\\1\\1\end{pmatrix} = \begin{pmatrix}4\\-6\\4\\-1\end{pmatrix}$$

Thus the coordinates relative to the standard basis is [4, -6, 4, -1], i.e., it is the polynomial $4 - 6t + 4t^2 - t^3$.

(d) what are the coordinates of the polynomial $1 + t + t^2 + t^3$ relative to the basis \mathcal{B} given in (a)?

Solution: We use the formula $[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}[\mathbf{x}]$. It is clear that $P_{\mathcal{B}}^{-1} = P_{\mathcal{B}}$ hence

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}[\mathbf{x}] = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -6 \\ 4 \\ -1 \end{pmatrix}_{\mathcal{B}},$$

i.e., $1 + t + t^2 + t^3 = 4 - 6(1 - t) + 4(1 - t)^2 - (1 - t)^3$.

(e) the set $\mathcal{C} = \{1, (1+t), (1+t)^2, (1+t)^3\}$ is also a basis for V_3 what is the coordinates relative to \mathcal{C} of the polynomial $P = [1, 1, 1, 1]_{\mathcal{B}}$ of part (c)?

Solution: $1 = [1, 0, 0, 0], 1 + t = [1, 1, 0, 0], (1 + t)^2 = 1 + 2t + t^2 = [1, 2, 1, 0], (1 + t)^3 = 1 + 3t + 3t^2 + t^3 = [1, 3, 3, 1].$ Writing these as column vectors results in a matrix

$$P_{\mathcal{C}} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}, P_{\mathcal{C}}^{-1} = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

We know that

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}_{\mathcal{B}} = P_{\mathcal{C}}^{-1} P_{\mathcal{B}} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}_{\mathcal{B}}$$

because $P_{\mathcal{C}\leftarrow\mathcal{B}} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}$ and

$$P_{\mathcal{C}}^{-1}P_{\mathcal{B}}\begin{pmatrix}1\\1\\1\\1\end{pmatrix}_{\mathcal{B}} = \begin{pmatrix}1 & -1 & 1 & -1\\0 & 1 & -2 & 3\\0 & 0 & 1 & -3\\0 & 0 & 0 & 1\end{pmatrix}\begin{pmatrix}4\\-6\\4\\-1\end{pmatrix} = \begin{pmatrix}15\\-17\\7\\-1\end{pmatrix}_{\mathcal{C}}$$

2. Given a polynomial $P(t) = a_0 + a_1t + a_2t^2 + ... + a_nt^n$ of degree *n* then its derivative $P'(t) = a_1 + 2a_2t + ... + na_nt^{n-1}$ is a polynomial of degree at most n-1. Consider the case n = 3 and show that:

(a) the map $T: V_3 \to V_2$ defined by T(P(t)) = P'(t) is a linear transformation;

Solution: If P(t) and Q(t) are two polynomials of degree at most 3 then P(t) + Q(t) is also a polynomial of degree 3 then T(P(t) + Q(t)) = (P(t) + Q(t))' = P'(t) + Q'(t) = T(P(t)) + T(Q(t)). If c is a scalar then T(cP(t)) = (cP(t))' = cP'(t) = cT(P(t)).

(b) write down the matrix A representating the transformation T relative to the standard bases for V_3 and V_2 ?

Solution: The standard basis for $V_3 = \{e_1 = 1, e_2 = t, e_3 = t^2, e_4 = t^3\}$ and that of $V_2 = \{e_1 = 1, e_2 = t, e_3 = t^2\}$. We have

$$Te_{1} = (1)' = 0 = 0(1) + 0(t) + 0(t^{2}) = [0, 0, 0]$$

$$Te_{2} = (t)' = 1 = 1(1) + 0(t) + 0(t^{2}) = [1, 0, 0]$$

$$Te_{3} = (t^{2})' = 2t = 0(1) + 2(t) + 0(t^{2}) = [0, 2, 0]$$

$$Te_{4} = (t^{3})' = 3t^{2} = 0(1) + 0(t) + 3(t^{2}) = [0, 0, 3]$$

thus the matrix A is given by

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

(c) what is the null space of the matrix A in (b)?

Solution: Let $\mathbf{x} = [x_1, x_2, x-3, x_4]$ be a vector in the null space of A then $A\mathbf{x} = 0$ which is equivalent to the condition that $x_2 = x_3 = x_4 = 0$ with x_1 being a free variable so:

$$\operatorname{nul} A = \{ x_1 \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \}$$

(d) what is the column space of the matrix A in (b)?

Solution: The column space is the linear span of the vectors

$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\3 \end{pmatrix} \right\}$$

which is all of V_2 .

(e) verify the Rank Theorem by using your answers for (c) and (d).

Solution: By (c) the nullity of $A = \dim \operatorname{nul} A = 1$ and by (d) the rank of $A = \dim \operatorname{column} \operatorname{space} = 3$ thus nullity of $A + \operatorname{rank} \operatorname{of} A = 4$ = number of columns of A verifying the Rank Theorem.