MATH 221 Linear Algebra Quiz V

(I) Decide which of the following statements, concerning an $m \times n$ matrix A, are true and which are false (no proof is needed however make sure that you understand your answers).
(1) If B is a matrix in echelon form obtained from A via elementary row operations then the row space of A and the row space of B are the same.
(2) If B is a matrix in echelon form then the non-zero rows form a basis for the row space of B.
(3) If B is a matrix in echelon form then the dimension of the row space of B is equal to the number of pivots of B.
(4) If B is a matrix in echelon form then the dimension of the null space of B is equal to the number of free variables in the equation $B \mathbf{x}=0$.
(5) If B is a matrix in echelon form then the dimension of the row space of B is equal to the number of leading variables in the equation $B \mathbf{x}=0$.
(6) If B is a matrix in echelon form then the columns of B containing the pivots form a basis of the column space of B.
(7) If B is a matrix in echelon form obtained from A via elementary row operations then whenever certain columns of B form a basis of the column space of B, the corresponding columns of A is a basis of the column space of A.
(8) The dimension of the row space of A is the same as the dimension of the column space of A.
(9) The sum of the dimension of the row space of A and the dimension of the null space of A is n.
(10) The sum of the dimension of the row space of A and the dimension of the null space of A is m.
(11) The sum of the dimension of the column space of A and the dimension of the null space of A is n.
(12) The sum of the dimension of the column space of A and the dimension of the null space of A is m.
(13) The sum of the dimension of the row space of A and the dimension of the column space of A is n.
(14) The sum of the dimension of the row space of A and the dimension of the column space of A is m.
(15) The rank of A is the dimension of the row space of A.
(16) The rank of A is the dimension of the column space of A.
(17) The sum of the rank of A and the dimension of the row space is n.
(18) The sum of the rank of A and the dimension of the row space is m.
(19) The sum of the rank of A and the dimension of the null space is n.
(20) The sum of the rank of A and the dimension of the null space is m.
(II) Let A be an $n \times n$ matrix which of the following statements are NOT equivalent to the staement that A is invertible?
(1) $\operatorname{dim} \operatorname{Null} \operatorname{Space}(A)=0$
(2) $\operatorname{dim} \operatorname{Null} \operatorname{Space}(A)=n$
(3) $\operatorname{rank}(A)=n$
(4) $\operatorname{rank}(A)=0$
(5) $\operatorname{dim} \operatorname{Column} \operatorname{Space}(A)=0$
(6) $\operatorname{dim} \operatorname{Columnl} \operatorname{Space}(A)=n$
(7) dim row $\operatorname{Space}(A)=0$
(8) $\operatorname{dim} \operatorname{row} \operatorname{Space}(A)=n$
(III) Find the dimension and basis for the null space, column space and row space of A given below. What is the rank of A ?

$$
A=\left(\begin{array}{ccccc}
3 & 2 & -4 & 1 & 5 \\
6 & 4 & -7 & 3 & 1 \\
-3 & -2 & 6 & 1 & 2 \\
9 & 6 & -11 & 4 & 6
\end{array}\right)
$$

