Let V be a subspace of \mathbf{R}^{4} whose basis is $\overrightarrow{x_{1}}=(1,0,1,0,0), \overrightarrow{x_{2}}=(0,1,-1,-1,0)$ and $\overrightarrow{x_{3}}=(0,0,10,0,10)$. Find an orthogonal basis B for V. (Here it might be useful to multiply one of the vectors you get to avoid fractional entries.) Find an orthonormal basis for V. Find a basis for V^{\perp}. (Hint: The orthogonal complement of the rowspace of a matrix A is what?) Find an orthogonal basis for V^{\perp}. Expand the basis B found in the first part to an orthogonal basis of \mathbb{R}^{5}. (This does not involve any computations.) \quad Let $\vec{x}=(1,2,1,0,1)$. Find $\operatorname{proj}_{V}(\vec{x}), \vec{z}=\vec{x}-\operatorname{proj}_{V}(\vec{x})$ and $\left[\operatorname{proj}_{V}(\vec{x})\right]_{B}$. (Expect for part (b) all the numbers work out nicely.)

