Math 221 - Linear Algebra Exam 1

1. (20 points -4 each) TRUE/FALSE. Determine whether the followings statements are true or false. (Comment: no reason needed.)
1.1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there is a $n \times m$ matrix A such $T(\vec{x})=A \vec{x}$.
1.2. Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Let $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a set of linearly independent vectors in \mathbb{R}^{m}. Then the set of vectors $\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{n}\right)\right\}$ is also linearly independent.
1.3. Let A and B be two invertible matrices. Then $A B A^{-1}$ is invertible.
1.4. If $B A=I$ then both A and B are invertible.
1.5. Let $T(\vec{x})$ be a linear transformation. T is one to one if and only if the kernel of T is $\{\overrightarrow{0}\}$.
1.6. If A is a 3×4 matrix of rank 2 then the dimension of the kernel of A is 1 .
1.7. If A and B are square matrices then $(A+B)^{2}=A^{2}+2 A B+B^{2}$
1.8. Let A be an $m \times n$ matrix, if the rank of A is m then the linear transformation $A \vec{x}$ is onto.
1.9. Let $V=\operatorname{Span}\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}\right\}$ be a subspace of \mathbb{R}^{4} of dimension 3. Then $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}\right\}$ form a basis of V.
1.10. Let V be a subspace of \mathbb{R}^{n}. A basis of V is a set of linearly independent vectors in V that is as large as possible.
2. (15 points)
2.1. Write $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
2.2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation. If $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right), T\left(\left[\begin{array}{c}-1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ then $T\left(\left[\begin{array}{l}1 \\ 4\end{array}\right]\right)=$?.
3. (30 points)
Let $A=\left[\begin{array}{ccccc}1 & -1 & 2 & 1 & -1 \\ -2 & 2 & -4 & -1 & 3 \\ 3 & -2 & 6 & 3 & 1 \\ 4 & -4 & 8 & 4 & -4\end{array}\right], \overrightarrow{b_{1}}=\left[\begin{array}{c}-2 \\ 8 \\ 4 \\ -8\end{array}\right]$ and $\overrightarrow{b_{2}}=\left[\begin{array}{l}0 \\ 2 \\ 4 \\ 0\end{array}\right]$
3.1. Row reduce the matrix $\left[A\left|\vec{b}_{1}\right| \vec{b}_{2}\right]$ into reduced row echelon form (this is not that hard).
3.2. Find a basis for $\operatorname{ker}(A)$. What is the dimension of $\operatorname{ker}(A)$?
3.3. Find a basis for the Image (A). What is the dimension of Image (A) ?
3.4. The vectors \vec{b}_{1} and \vec{b}_{2} are the Image (A). Why?
3.5. Find all solutions of $A \vec{x}=\overrightarrow{b_{1}}$.
3.6. Find all solutions of $A \vec{x}=\overrightarrow{b_{2}}$.
3.7. Use your answers to describe all possible matrices C with the property that $A C=\left[\begin{array}{cc}-2 & 0 \\ 8 & 2 \\ 4 & 4 \\ -8 & 0\end{array}\right]$.
4. (15 points) 4.1. Write down the standard matrix A for the linear transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ which is a projection on the $y-z$ plane followed by a counterclockwise rotation of an angle of $\frac{\pi}{3}$ (60 degrees) in the $y-z$ plane (i.e., find A such that $T(\vec{x})=A \vec{x}$).
4.2. What is the image of T (describe this geometrically)? What is the dimension of the image of T ? What is the rank of T ? (Hint: you should need to do any computation or row reduction to answer this question or any of the following questions.)
4.3. What is the dimension of the kernel of T ? What is the image of T (describe this geometrically)?
4.4. Is $T 1-1$? Why or why not? Is T onto? Why or why not?
5. (20 points -4 each) Provide the precise definition of each of the following concept: 5.1. A vector \vec{x} is a linear combination of the vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$.
5.2. The span of a set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$.
5.3. A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ being linearly independent.
5.4. A function $T: X \rightarrow Y$ is onto.
5.5. A is an invertible matrix.
