Math 221 - Linear Algebra
 Exam 1

1. (20 points -4 each) TRUE/FALSE. Determine whether the followings statements are true or false. (Comment: no reason needed.)
1.1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there is a $n \times m$ matrix A such $T(\vec{x})=A \vec{x}$.

FALSE. A must be $m \times n$.
1.2. Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Let $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a set of linearly independent vectors in \mathbb{R}^{m}. Then the set of vectors $\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{n}\right)\right\}$ is also linearly independent.

FALSE. Consider $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ by $T(\vec{x})=\overrightarrow{0}$.
1.3. Let A and B be two invertible matrices. Then $A B A^{-1}$ is invertible.

TRUE. $\left(A B^{-1} A^{-1}\right)\left(A B A^{-1}\right)=I$.
1.4. If $B A=I$ then both A and B are invertible.

FALSE. $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right]$ then $B A=I_{2}$.
1.5. Let $T(\vec{x})$ be a linear transformation. T is one to one if and only if the kernel of T is $\{\overrightarrow{0}\}$.

TRUE. Assume that $T(\vec{x})=A \vec{x}$. Then kernel of A is $\{\overrightarrow{0}\}$ iff there are no free variables iff $A \vec{x}=\vec{b}$ has at most one solution for all \vec{b} iff T is one to one.
1.6. If A is a 3×4 matrix of rank 2 then the dimension of the kernel of A is 1 .

FALSE. By the rank theorem the dimension of the kernel is the number of columns (4) minus the rank (2), so 2.
1.7. If A and B are square matrices then $(A+B)^{2}=A^{2}+2 A B+B^{2}$

FALSE. You need to have $A B=B A$ for this to be true which is not usually the case. Take $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
1.8. Let A be an $m \times n$ matrix, if the rank of A is m then the linear transformation $A \vec{x}$ is onto.

TRUE. If the rank of A is m then $A \vec{x}=\vec{b}$ is consistent for all \vec{b} which means that $A \vec{x}$ is onto.
1.9. Let $V=\operatorname{Span}\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}\right\}$ be a subspace of \mathbb{R}^{4} of dimension 3. Then $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}\right\}$ form a basis of V.

FALSE. A basis of V has only 3 vectors in it.
1.10. Let V be a subspace of \mathbb{R}^{n}. A basis of V is a set of linearly independent vectors in V that is as large as possible.

TRUE. The dimension of V is m which less than or equal to n. There are at most m linearly independent vectors in V and m linearly independent vectors in V forms a basis of V.
2. (15 points)
2.1. Write $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.

We must solve the equation $x_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{c}-1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 4\end{array}\right]$. The augmented matrix of this system is $\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 2 & 4\end{array}\right]$ which row-reduces to $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right]$. Hence $2\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{c}-1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 4\end{array}\right]$.
2.2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation. If $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right), T\left(\left[\begin{array}{c}-1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ then $T\left(\left[\begin{array}{l}1 \\ 4\end{array}\right]\right)=$?.
$T\left(\left[\begin{array}{l}1 \\ 4\end{array}\right]\right)=T\left(2\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{c}-1 \\ 2\end{array}\right]\right)=2 T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)+T\left(\left[\begin{array}{c}-1 \\ 2\end{array}\right]\right)=2\left[\begin{array}{l}2 \\ 3\end{array}\right]+\left[\begin{array}{l}4 \\ 5\end{array}\right]=\left[\begin{array}{l}4 \\ 6\end{array}\right]+\left[\begin{array}{l}4 \\ 5\end{array}\right]=\left[\begin{array}{c}8 \\ 11\end{array}\right]$, since T is a linear transformation.
3. (30 points)

Let $A=\left[\begin{array}{ccccc}1 & -1 & 2 & 1 & -1 \\ -2 & 2 & -4 & -1 & 3 \\ 3 & -2 & 6 & 3 & 1 \\ 4 & -4 & 8 & 4 & -4\end{array}\right], \overrightarrow{b_{1}}=\left[\begin{array}{c}-2 \\ 8 \\ 4 \\ -8\end{array}\right]$ and $\overrightarrow{b_{2}}=\left[\begin{array}{l}0 \\ 2 \\ 4 \\ 0\end{array}\right]$
3.1. Row reduce the matrix $\left[A\left|\vec{b}_{1}\right| \vec{b}_{2}\right]$ into reduced row echelon form (this is not that hard).
3.2. Find a basis for $\operatorname{ker}(A)$. What is the dimension of $\operatorname{ker}(A)$?
3.3. Find a basis for the Image (A). What is the dimension of Image (A) ?
3.4. The vectors \vec{b}_{1} and \vec{b}_{2} are the Image (A). Why?
3.5. Find all solutions of $A \vec{x}=\overrightarrow{b_{1}}$.
3.6. Find all solutions of $A \vec{x}=\overrightarrow{b_{2}}$.
3.7. Use your answers to describe all possible matrices C with the property that $A C=\left[\begin{array}{cc}-2 & 0 \\ 8 & 2 \\ 4 & 4 \\ -8 & 0\end{array}\right]$.

The matrix $\left[A\left|\vec{b}_{1}\right| \vec{b}_{2}\right]$ reduces to $B=\left[\begin{array}{ccccccc}1 & 0 & 2 & 0 & 2 & 4 & 2 \\ 0 & 1 & 0 & 0 & 4 & 10 & 4 \\ 0 & 0 & 0 & 1 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
Hence a basis for the kernel are the two vectors $\vec{x}_{1}=\left[\begin{array}{c}-2 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\vec{x}_{2}=\left[\begin{array}{c}-2 \\ -4 \\ 0 \\ -1 \\ 1\end{array}\right] \cdot \operatorname{ker}(A)$ has dimension 2.
The pivot columns of $\operatorname{rref}(A)$ are the first, second and fourth. So the first, second and fourth columns of A are a basis for the Image (A). Image (A) has dimension 3.

In $\operatorname{rref}\left(\left[A\left|\vec{b}_{1}\right| \vec{b}_{2}\right]\right)$ the last two columns are a linear combination of the pivot columns and hence \vec{b}_{1} and \vec{b}_{2} are linear combinations of the columns of A.

A solution for $A \vec{x}=\overrightarrow{b_{1}}$ is $\vec{x}_{p}=\left[\begin{array}{c}4 \\ 10 \\ 0 \\ 4 \\ 0\end{array}\right]$ and all the solutions are in the form $\vec{x}_{p}+\vec{x}$, where \vec{x} is in the kernel of A. Or a solution looks like $\vec{x}_{p}+c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}$ for c_{1} and c_{2} scalars. Let $H_{1}=\vec{x}_{p}+c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}$.

A solution for $A \vec{x}=\overrightarrow{b_{2}}$ is $\vec{x}_{q}=\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 2 \\ 0\end{array}\right]$ and all the solutions are in the form $\vec{x}_{q}+\vec{x}$, where \vec{x} is in the kernel of A. Or a solution looks like $\vec{x}_{q}+c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}$ for c_{1} and c_{2} scalars. Let $H_{2}=\vec{x}_{q}+c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}$.

Then $C=\left[\begin{array}{ll}\vec{u}_{1} & \vec{u}_{2}\end{array}\right]$, where $\vec{u}_{i} \in H_{i}$.
4. (15 points) 4.1. Write down the standard matrix A for the linear transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ which is a projection on the $y-z$ plane followed by a counterclockwise rotation of an angle of $\frac{\pi}{3}$ (60 degrees) in the $y-z$ plane (i.e., find A such that $T(\vec{x})=A \vec{x}$).
$A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right) T\left(\vec{e}_{3}\right)\right] . \quad \vec{e}_{1}$ is projected to $\overrightarrow{0}$ which is rotated to $\overrightarrow{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] . \vec{e}_{2}$ is projected to itself \vec{e}_{2} which is then rotated to $\left[\begin{array}{c}0 \\ 1 / 2 \\ \sqrt{3} / 2\end{array}\right] . \vec{e}_{3}$ is projected to itself \vec{e}_{3} which is then rotated to $\left[\begin{array}{c}0 \\ -\sqrt{3} / 2 \\ 1 / 2\end{array}\right]$. So $A=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 / 2 & -\sqrt{3} / 2 \\ 0 & \sqrt{3} / 2 & 1 / 2\end{array}\right]$
4.2. What is the image of T (describe this geometrically)? What is the dimension of the image of T ? What is the rank of T ? (Hint: you should need to do any computation or row reduction to answer this question or any of the following questions.)

Clearly the image of T is the $y-z$ plane which has dimension 2. So A must have rank 2 .
4.3. What is the dimension of the kernel of T ? What is the image of T (describe this geometrically)?

By the rank-nullity theorem the dimension of the kernel of T must be 1 . The kernel is the x-axis which has dimension 1.
4.4. Is $T 1-1$? Why or why not? Is T onto? Why or why not?
T is not 1-1 because the kernel of T is not the zero vector. T is not onto because the image of T is not all \mathbb{R}^{3}.
5. (20 points -4 each) Provide the precise definition of each of the following concept:
5.1. A vector \vec{x} is a linear combination of the vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$.

If there are scalars c_{i} 's such that $\vec{x}=c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}$.
5.2. The span of a set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$.

All linear combinations of the vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$.
5.3. A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ being linearly independent.

No vector \vec{v}_{j} is a linear combination of the others.
5.4. A function $T: X \rightarrow Y$ is onto.

If for all $y \in Y$, there is a $x \in X$ such that $T(x)=y$.
5.5. A is an invertible matrix.

There is a matrix A^{-1} such that $A A^{-1}=I=A^{-1} A$. This implies that A must be square.

