$\begin{array}{c} {\rm Math}\ 221\ -{\rm Linear}\ {\rm Algebra}\\ {\rm Exam}\ 1 \end{array}$

1. (20 points – 4 each) TRUE/FALSE. Determine whether the followings statements are true or false. (Comment: no reason needed.)

1.1. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there is a $n \times m$ matrix A such $T(\vec{x}) = A\vec{x}$.

FALSE. A must be $m \times n$.

1.2. Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Let $S = \{\vec{v}_1, \ldots, \vec{v}_n\}$ be a set of linearly independent vectors in \mathbb{R}^m . Then the set of vectors $\{T(\vec{v}_1), \ldots, T(\vec{v}_n)\}$ is also linearly independent.

FALSE. Consider $T : \mathbb{R}^m \to \mathbb{R}^n$ by $T(\vec{x}) = \vec{0}$. **1.3.** Let A and B be two invertible matrices. Then ABA^{-1} is invertible.

TRUE. $(AB^{-1}A^{-1})(ABA^{-1}) = I$. **1.4.** If BA = I then both A and B are invertible.

FALSE.
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ then $BA = I_2$.

1.5. Let $T(\vec{x})$ be a linear transformation. T is one to one if and only if the kernel of T is $\{\vec{0}\}$.

TRUE. Assume that $T(\vec{x}) = A\vec{x}$. Then kernel of A is $\{\vec{0}\}$ iff there are no free variables iff $A\vec{x} = \vec{b}$ has at most one solution for all \vec{b} iff T is one to one.

1.6. If A is a 3×4 matrix of rank 2 then the dimension of the kernel of A is 1.

FALSE. By the rank theorem the dimension of the kernel is the number of columns (4) minus the rank (2), so 2.

1.7. If A and B are square matrices then $(A + B)^2 = A^2 + 2AB + B^2$

FALSE. You need to have AB = BA for this to be true which is not usually the case. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

1.8. Let \vec{A} be an $m \times n$ matrix, if the rank of A is m then the linear transformation $A\vec{x}$ is onto.

TRUE. If the rank of A is m then $A\vec{x} = \vec{b}$ is consistent for all \vec{b} which means that $A\vec{x}$ is onto.

1.9. Let $V = Span\{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$ be a subspace of \mathbb{R}^4 of dimension 3. Then $\{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$ form a basis of V.

FALSE. A basis of V has only 3 vectors in it.

1.10. Let V be a subspace of \mathbb{R}^n . A basis of V is a set of linearly independent vectors in V that is as large as possible.

TRUE. The dimension of V is m which less than or equal to n. There are at most m linearly independent vectors in V and m linearly independent vectors in V forms a basis of V.

2. (15 points) **2.1.** Write $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$. We must solve the equation $x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$. The augmented matrix of this system is $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ which row-reduces to $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$. Hence $2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$. **2.2.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. If $T(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = (\begin{bmatrix} 2 \\ 3 \end{bmatrix}), T(\begin{bmatrix} -1 \\ 2 \end{bmatrix}) = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ then $T(\begin{bmatrix} 1 \\ 4 \end{bmatrix}) = ?$. $T(\begin{bmatrix} 1 \\ 4 \end{bmatrix}) = T(2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix}) = 2T(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) + T(\begin{bmatrix} -1 \\ 2 \end{bmatrix}) = 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 8 \\ 11 \end{bmatrix}$, since T is a linear transformation.

3. (30 points)

Let
$$A = \begin{bmatrix} 1 & -1 & 2 & 1 & -1 \\ -2 & 2 & -4 & -1 & 3 \\ 3 & -2 & 6 & 3 & 1 \\ 4 & -4 & 8 & 4 & -4 \end{bmatrix}$$
, $\vec{b_1} = \begin{bmatrix} -2 \\ 8 \\ 4 \\ -8 \end{bmatrix}$ and $\vec{b_2} = \begin{bmatrix} 0 \\ 2 \\ 4 \\ 0 \end{bmatrix}$

3.1. Row reduce the matrix $[A|b_1|b_2]$ into reduced row echelon form (this is not that hard).

- **3.2.** Find a basis for ker(A). What is the dimension of ker(A)?
- **3.3.** Find a basis for the Image(A). What is the dimension of Image(A)?
- **3.4.** The vectors \vec{b}_1 and \vec{b}_2 are the Image(A). Why?
- **3.5.** Find all solutions of $A\vec{x} = \vec{b_1}$.
- **3.6.** Find all solutions of $A\vec{x} = \vec{b_2}$.

3.7. Use your answers to describe *all* possible matrices *C* with the property that $AC = \begin{bmatrix} -2 & 0 \\ 8 & 2 \\ 4 & 4 \\ 0 & 0 \end{bmatrix}$.

The matrix
$$[A|\vec{b}_1|\vec{b}_2]$$
 reduces to $B = \begin{bmatrix} 1 & 0 & 2 & 0 & 2 & 4 & 2 \\ 0 & 1 & 0 & 0 & 4 & 10 & 4 \\ 0 & 0 & 0 & 1 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.
Hence a basis for the kernel are the two vectors $\vec{x}_1 = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ and $\vec{x}_2 = \begin{bmatrix} -2 \\ -4 \\ 0 \\ -1 \\ 1 \end{bmatrix}$. ker(A) has dimension 2

 $\begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$ The pivot columns of rref(A) are the first, second and fourth. So the first, second and fourth columns of A are a basis for the Image(A). Image(A) has dimension 3.

In rref $([A|\vec{b}_1|\vec{b}_2])$ the last two columns are a linear combination of the pivot columns and hence \vec{b}_1 and \vec{b}_2 are linear combinations of the columns of A.

A solution for
$$A\vec{x} = \vec{b_1}$$
 is $\vec{x_p} = \begin{bmatrix} 4\\10\\0\\4\\0\end{bmatrix}$ and all the solutions are in the form $\vec{x_p} + \vec{x}$, where \vec{x} is in the kernel of A . Or a solution looks like $\vec{x_p} + c_1\vec{x_1} + c_2\vec{x_2}$ for c_1 and c_2 scalars. Let $H_1 = \vec{x_p} + c_1\vec{x_1} + c_2\vec{x_2}$.

A solution for $A\vec{x} = \vec{b_2}$ is $\vec{x_q} = \begin{bmatrix} 2\\4\\0\\2\\0 \end{bmatrix}$ and all the solutions are in the form $\vec{x_q} + \vec{x}$, where \vec{x} is in the kernel

of A. Or a solution looks like $\vec{x}_q + c_1\vec{x}_1 + c_2\vec{x}_2$ for c_1 and c_2 scalars. Let $H_2 = \vec{x}_q + c_1\vec{x}_1 + c_2\vec{x}_2$. Then $C = [\vec{u}_1 \ \vec{u}_2]$, where $\vec{u}_i \in H_i$.

4. (15 points) **4.1.** Write down the standard matrix A for the linear transformation $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ which is a projection on the y-z plane followed by a counterclockwise rotation of an angle of $\frac{\pi}{3}$ (60 degrees) in the y-z plane (i.e., find A such that $T(\vec{x}) = A\vec{x}$).

$$A = [T(\vec{e_1}) \ T(\vec{e_2}) \ T(\vec{e_3})]. \ \vec{e_1} \text{ is projected to } \vec{0} \text{ which is rotated to } \vec{0} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}. \ \vec{e_2} \text{ is projected to itself}$$

$$\vec{e_2} \text{ which is then rotated to } \begin{bmatrix} 0\\1/2\\\sqrt{3}/2 \end{bmatrix}. \ \vec{e_3} \text{ is projected to itself } \vec{e_3} \text{ which is then rotated to } \begin{bmatrix} 0\\-\sqrt{3}/2\\1/2 \end{bmatrix}. \text{ So}$$

$$A = \begin{bmatrix} 0 & 0 & 0\\0 & 1/2 & -\sqrt{3}/2\\0 & \sqrt{3}/2 & 1/2 \end{bmatrix}$$

$$\mathbf{4.2.} \text{ What is the image of } T \text{ (describe this geometrically)? What is the dimension of the image of } T?$$

4.2. What is the image of T (describe this geometrically)? What is the dimension of the image of T? What is the rank of T? (Hint: you should need to do any computation or row reduction to answer this question or any of the following questions.)

Clearly the image of T is the y - z plane which has dimension 2. So A must have rank 2. **4.3.** What is the dimension of the kernel of T? What is the image of T (describe this geometrically)?

By the rank-nullity theorem the dimension of the kernel of T must be 1. The kernel is the x-axis which has dimension 1.

4.4. Is T 1-1? Why or why not? Is T onto? Why or why not?

T is not 1-1 because the kernel of T is not the zero vector. T is not onto because the image of T is not all \mathbb{R}^3 .

5. (20 points – 4 each) Provide the precise definition of each of the following concept: 5.1. A vector \vec{x} is a *linear combination* of the vectors $\vec{v}_1, \ldots, \vec{v}_n$.

If there are scalars c_i 's such that $\vec{x} = c_1 \vec{v}_1 + \ldots + c_n \vec{v}_n$. **5.2.** The *span* of a set of vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$.

All linear combinations of the vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$. **5.3.** A set of vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$ being *linearly independent*.

No vector \vec{v}_j is a linear combination of the others. 5.4. A function $T: X \to Y$ is *onto*.

If for all $y \in Y$, there is a $x \in X$ such that T(x) = y. 5.5. *A* is an *invertible matrix*.

There is a matrix A^{-1} such that $AA^{-1} = I = A^{-1}A$. This implies that A must be square.