Math 221 - Linear Algebra Quiz 1

1. (10 points) Consider the following system of linear equations:

$$
\begin{aligned}
2 x_{1}+4 x_{2}+6 x_{3} & =6 \\
x_{1}+3 x_{2}+4 x_{3} & =4 \\
x_{2}+a x_{3} & =1
\end{aligned}
$$

1.1. (1 point) Find A and \vec{b} such that the above system is in the form $A \vec{x}=\vec{b}$ (i.e. an matrix equation).

$$
A=\left[\begin{array}{lll}
2 & 4 & 6 \\
1 & 3 & 4 \\
0 & 1 & a
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{l}
6 \\
4 \\
1
\end{array}\right] .
$$

1.2. (5 points) Explicitly showing all the steps reduce the augmented matrix into reduce echelon form. (Hint: there are 2 cases for the rest of the problem.)

The augmented matrix is $M=\left[\begin{array}{llll}2 & 4 & 6 & 6 \\ 1 & 3 & 4 & 4 \\ 0 & 1 & a & 1\end{array}\right]$. First lets divide the top row by 2 to get: $\left[\begin{array}{llll}1 & 2 & 3 & 3 \\ 1 & 3 & 4 & 4 \\ 0 & 1 & a & 1\end{array}\right]$. Now multiple the top row by -1 and add to the second row to get $\left[\begin{array}{llll}1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & a & 1\end{array}\right]$. Subtract the second row from the third row to get $\left[\begin{array}{cccc}1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & a-1 & 0\end{array}\right]$.

Now there are two cases; if $a \neq 1$ or $a=1$.
First lets assume $a \neq 1$. Then we can divide the last row by $a-1 \neq 0$ to get: $\left[\begin{array}{llll}1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$. Then subtract 3 times the last row from the first row and the last row from the second row to get: $\left[\begin{array}{llll}1 & 2 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$. Now subtract 2 times the second from the first row to get: $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$ which is in reduce echelon form.

Now assume $a=1$. Hence $N=\left[\begin{array}{llll}1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$. Subtract two times the second from the first row to get $\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ which is in reduce echelon form.
1.3. (1 point) What is the rank of A ?

If $a=1$ then the rank of A is 2 ; otherwise A rank is 3 .
1.4. (1 point) Is there an a such that the system does not have a solution? Why or why not?

No! It is never the case that the last column contains a leading 1 and hence it is always consistent.
1.5. (2 points) Find the general solution (in vector form) for the above system.

There are two cases: either the reduce echelon from is $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$ or $\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$. In the first case, the general solution is $x_{1}=0, x_{2}=1$ and $x_{2}=1$ or $\vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. In the second case, the general solution is $x_{1}=1-x_{3}, x_{2}=1-x_{3}$ and x_{3} is free. Another way to write this is: $\vec{x}=\left[\begin{array}{c}1-x_{3} \\ 1-x_{3} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{c}-x_{3} \\ -x_{3} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$.
2. (6 points) Let $\vec{x}_{1}=\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right], \vec{x}_{2}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}4 \\ 0 \\ b\end{array}\right]$.
2.1. Find a value of b such that \vec{y} is a linear combination of \vec{x}_{1} and $\overrightarrow{x_{2}}$.
\vec{y} is a linear combination of \vec{x}_{1} and $\overrightarrow{x_{2}}$ if and only if the linear system associated to the augmented $\operatorname{matrix}\left[\begin{array}{ccc}1 & 3 & 4 \\ -2 & 2 & 0 \\ 4 & 1 & b\end{array}\right]$ is consistent.

Let us row reduce the matrix, to find a b for which the linear system is consistent. Multiply by 2 the first row and add it to the second to get: $\left[\begin{array}{lll}1 & 3 & 4 \\ 0 & 8 & 8 \\ 4 & 1 & b\end{array}\right]$. Now multiple the top row by -4 and add it to the third to get $\left[\begin{array}{ccc}1 & 3 & 4 \\ 0 & 8 & 8 \\ 0 & -11 & -16+b\end{array}\right]$. Divide by 8 the second row to get $\left[\begin{array}{ccc}1 & 3 & 4 \\ 0 & 1 & 1 \\ 0 & -11 & -16+b\end{array}\right]$. Multiply the second row by -3 and add it to the first row to get $\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -11 & -16+b\end{array}\right]$. Multiply the second row by 11 and add it to the third row to get $\left[\begin{array}{ccc}1 & 0 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & -5+b\end{array}\right]$. Now, the system is consistent if and only if $-5+b=0$. Hence if $b=5$.
2.2. Find a value of b such that \vec{y} is not a linear combination of $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$.

Take any $b \neq 5$.
3. (4 points) Both of the following statements are false. Provide an example.
3.1. (2 point) If A is a 5×4 matrix and has rank 4 then for all $\vec{b} \in \mathbb{R}^{4}, A \vec{x}=\vec{b}$ is consistent.

Take $A=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$.
3.2. (2 points) If A is an upper triangular matrix then the rank of A is the number of non-zero entries on A 's diagonal.

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

