Math 221 – Linear Algebra Quiz 1

1. (10 points) Consider the following system of linear equations:

1.1. (1 point) Find A and \vec{b} such that the above system is in the form $A\vec{x} = \vec{b}$ (i.e. an matrix equation).

 $A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 3 & 4 \\ 0 & 1 & a \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 6 \\ 4 \\ 1 \end{bmatrix}.$

1.2. (5 points) Explicitly showing *all* the steps reduce the *augmented matrix* into reduce echelon form. (Hint: there are 2 cases for the rest of the problem.)

The augmented matrix is $M = \begin{bmatrix} 2 & 4 & 6 & 6 \\ 1 & 3 & 4 & 4 \\ 0 & 1 & a & 1 \end{bmatrix}$. First lets divide the top row by 2 to get: $\begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 3 & 4 & 4 \\ 0 & 1 & a & 1 \end{bmatrix}$. Now multiple the top row by -1 and add to the second row to get $\begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & a & 1 \end{bmatrix}$. Subtract the second row from the third row to get $\begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & a - 1 & 0 \end{bmatrix}$. Now there are two cases; if $a \neq 1$ or a = 1. First lets assume $a \neq 1$. Then we can divide the last row by $a - 1 \neq 0$ to get: $\begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$. Then subtract 3 times the last row from the first row and the last row from the second row to get: $\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$. Now subtract 2 times the second from the first row to get: $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ which is in reduce echelon form. Now assume a = 1. Hence $N = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Subtract two times the second from the first row to get $\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ which is in reduce echelon form.

1.3. (1 point) What is the rank of A?

If a = 1 then the rank of A is 2; otherwise A rank is 3.

1.4. (1 point) Is there an *a* such that the system does not have a solution? Why or why not?

No! It is never the case that the last column contains a leading 1 and hence it is always consistent.

1.5. (2 points) Find the general solution (in vector form) for the above system.

There are two cases: either the reduce echelon from is $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. In the first case, the general solution is $x_1 = 0, x_2 = 1$ and $x_2 = 1$ or $\vec{x} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. In the second case, the general solution is $x_1 = 1 - x_3, x_2 = 1 - x_3$ and x_3 is free. Another way to write this is: $\vec{x} = \begin{bmatrix} 1 - x_3 \\ 1 - x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -x_3 \\ -x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}.$

2. (6 points) Let $\vec{x}_1 = \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$, $\vec{x}_2 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 4 \\ 0 \\ b \end{bmatrix}$.

2.1. Find a value of b such that \vec{y} is a linear combination of \vec{x}_1 and \vec{x}_2 .

 \vec{y} is a linear combination of \vec{x}_1 and \vec{x}_2 if and only if the linear system associated to the augmented $\begin{array}{c} y \text{ is called} \\ \text{matrix} \begin{bmatrix} 1 & 3 & 4 \\ -2 & 2 & 0 \\ 4 & 1 & b \end{bmatrix} \text{ is consistent.}$

Let us row reduce the matrix, to find a b for which the linear system is consistent is consistent. the first row and add it to the second to get: $\begin{bmatrix} 1 & 3 & 4 \\ 0 & 8 & 8 \\ 4 & 1 & b \end{bmatrix}$. Now multiple the top row by -4 and add it to the third to get $\begin{bmatrix} 1 & 3 & 4 \\ 0 & 8 & 8 \\ 0 & -11 & -16 + b \end{bmatrix}$. Divide by 8 the second row to get $\begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & 1 \\ 0 & -11 & -16 + b \end{bmatrix}$. Multiply the second row by -3 and add it to the first row to get $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -11 & -16 + b \end{bmatrix}$. Multiply the Let us row reduce the matrix, to find a b for which the linear system is consistent. Multiply by 2

second row by 11 and add it to the third row to get $\begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & -5 + b \end{bmatrix}$. Now, the system is consistent if and only if -5 + b = 0. Hence if b = 5.

2.2. Find a value of b such that \vec{y} is not a linear combination of \vec{x}_1 and \vec{x}_2 .

Take any $b \neq 5$.

(4 points) Both of the following statements are false. Provide an example. 3. **3.1.** (2 point) If A is a 5 × 4 matrix and has rank 4 then for all $\vec{b} \in \mathbb{R}^4$, $A\vec{x} = \vec{b}$ is consistent.

	Γ1	0	0	0]		[0]	
	0	1	0	0		0	
Take $A =$	0	0	1	0	and $\vec{b} =$	0	
	0	0	0	1		0	
	0	0	0	0		$\lfloor 1 \rfloor$	

3.2. (2 points) If A is an upper triangular matrix then the rank of A is the number of non-zero entries on A's diagonal.

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$